예제 #1
0
    def test_value_error_for_non_dataframe_input(self):
        """
        Test ValueError on passing non-dataframe input.
        """

        with self.assertRaises(ValueError):
            cla = CriticalLineAlgorithm()
            cla.allocate(asset_prices=self.data.values, solution='cla_turning_points', asset_names=self.data.columns)
예제 #2
0
    def test_value_error_for_unknown_solution(self):
        """
        Test ValueError on passing unknown solution string.
        """

        with self.assertRaises(ValueError):
            cla = CriticalLineAlgorithm()
            cla.allocate(asset_prices=self.data, solution='unknown_string', asset_names=self.data.columns)
예제 #3
0
    def test_all_inputs_none(self):
        """
        Test allocation when all inputs are None.
        """

        with self.assertRaises(ValueError):
            cla = CriticalLineAlgorithm()
            cla.allocate(asset_names=self.data.columns)
예제 #4
0
    def test_value_error_for_unknown_returns(self):
        """
        Test ValueError on passing unknown returns string.
        """

        with self.assertRaises(ValueError):
            cla = CriticalLineAlgorithm(calculate_expected_returns="unknown_returns")
            cla.allocate(asset_prices=self.data, solution='cla_turning_points', asset_names=self.data.columns)
예제 #5
0
    def test_value_error_for_non_date_index(self):
        """
        Test ValueError on passing dataframe not indexed by date.
        """

        with self.assertRaises(ValueError):
            cla = CriticalLineAlgorithm()
            data = self.data.reset_index()
            cla.allocate(asset_prices=data, solution='cla_turning_points', asset_names=self.data.columns)
예제 #6
0
    def test_cla_efficient_frontier(self):
        """
        Test the calculation of the efficient frontier solution.
        """

        cla = CriticalLineAlgorithm(weight_bounds=(0, 1), calculate_expected_returns="mean")
        cla.allocate(asset_prices=self.data, solution='efficient_frontier', asset_names=self.data.columns)
        assert len(cla.efficient_frontier_means) == len(cla.efficient_frontier_sigma) and \
               len(cla.efficient_frontier_sigma) == len(cla.weights.values)
        assert cla.efficient_frontier_sigma[-1] <= cla.efficient_frontier_sigma[0] and \
               cla.efficient_frontier_means[-1] <= cla.efficient_frontier_means[0]  # higher risk = higher return
예제 #7
0
    def test_cla_min_volatility(self):
        """
        Test the calculation for minimum volatility weights.
        """

        cla = CriticalLineAlgorithm(weight_bounds=(0, 1), calculate_expected_returns="mean")
        cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns)
        weights = cla.weights.values[0]
        assert (weights >= 0).all()
        assert len(weights) == self.data.shape[1]
        np.testing.assert_almost_equal(np.sum(weights), 1)
예제 #8
0
    def test_free_bound_weights(self):
        # pylint: disable=protected-access,invalid-name
        """
        Test the method of freeing bounded weights when free-weights is None.
        """

        cla = CriticalLineAlgorithm(weight_bounds=(0, 1), calculate_expected_returns="mean")
        cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns)
        x, y = cla._free_bound_weight(free_weights=[1]*(cla.expected_returns.shape[0]+1))
        assert not x
        assert not y
예제 #9
0
    def test_no_asset_names(self):
        """
        Test CLA when not supplying a list of asset names.
        """

        cla = CriticalLineAlgorithm()
        cla.allocate(asset_prices=self.data)
        weights = cla.weights.values[0]
        assert (weights >= 0).all()
        assert len(weights) == self.data.shape[1]
        np.testing.assert_almost_equal(np.sum(weights), 1)
예제 #10
0
    def test_valuerror_with_no_asset_names(self):
        """
        Test ValueError when not supplying a list of asset names and no other input.
        """

        with self.assertRaises(ValueError):
            cla = CriticalLineAlgorithm()
            expected_returns = ReturnsEstimators().calculate_mean_historical_returns(asset_prices=self.data,
                                                                                     resample_by='W')
            covariance = ReturnsEstimators().calculate_returns(asset_prices=self.data, resample_by='W').cov()
            cla.allocate(expected_asset_returns=expected_returns, covariance_matrix=covariance)
예제 #11
0
    def test_resampling_asset_prices(self):
        """
        Test resampling of asset prices.
        """

        cla = CriticalLineAlgorithm()
        cla.allocate(asset_prices=self.data, resample_by='B', solution='min_volatility', asset_names=self.data.columns)
        weights = cla.weights.values[0]
        assert (weights >= 0).all()
        assert len(weights) == self.data.shape[1]
        np.testing.assert_almost_equal(np.sum(weights), 1)
예제 #12
0
    def test_cla_with_exponential_returns(self):
        """
        Test the calculation of CLA turning points using exponential returns
        """

        cla = CriticalLineAlgorithm(weight_bounds=(0, 1), calculate_expected_returns="exponential")
        cla.allocate(asset_prices=self.data, asset_names=self.data.columns)
        weights = cla.weights.values
        weights[weights <= 1e-15] = 0 # Convert very very small numbers to 0
        for turning_point in weights:
            assert (turning_point >= 0).all()
            assert len(turning_point) == self.data.shape[1]
            np.testing.assert_almost_equal(np.sum(turning_point), 1)
예제 #13
0
    def test_cla_with_weight_bounds_as_lists(self):
        """
        Test the calculation of CLA turning points when we pass the weight bounds as a list
        instead of just lower and upper bound value.
        """

        cla = CriticalLineAlgorithm(weight_bounds=([0]*self.data.shape[1], [1]*self.data.shape[1]),
                                    calculate_expected_returns="mean")
        cla.allocate(asset_prices=self.data, asset_names=self.data.columns)
        weights = cla.weights.values
        weights[weights <= 1e-15] = 0  # Convert very very small numbers to 0
        for turning_point in weights:
            assert (turning_point >= 0).all()
            assert len(turning_point) == self.data.shape[1]
            np.testing.assert_almost_equal(np.sum(turning_point), 1)
예제 #14
0
    def test_w_for_no_bounded_weights(self):
        # pylint: disable=protected-access,invalid-name
        """
        Test the computation of weights (w) when there are no bounded weights.
        """

        cla = CriticalLineAlgorithm(weight_bounds=(0, 1), calculate_expected_returns="mean")
        cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns)
        data = self.data.cov()
        data = data.values
        x, y = cla._compute_w(covar_f_inv=data,
                              covar_fb=data,
                              mean_f=cla.expected_returns,
                              w_b=None)
        assert isinstance(x, np.ndarray)
        assert isinstance(y, float)
예제 #15
0
    def test_flag_true_for_purge_num_err(self):
        # pylint: disable=protected-access, no-self-use
        """
        Test whether the flag becomes True in the purge num error function.
        """

        cla = CriticalLineAlgorithm()
        cla.weights = [[1]]
        cla.lower_bounds = [100]
        cla.upper_bounds = [1]
        cla.lambdas = [[1]]
        cla.gammas = [[1]]
        cla.free_weights = [[1]]
        cla._purge_num_err(tol=1)
        assert not cla.weights
        assert not cla.lambdas
        assert not cla.gammas
예제 #16
0
    def test_cla_with_input_as_returns_and_covariance(self):
        # pylint: disable=invalid-name
        """
        Test CLA when we pass expected returns and covariance matrix as input.
        """

        cla = CriticalLineAlgorithm()
        expected_returns = ReturnsEstimators().calculate_mean_historical_returns(asset_prices=self.data)
        covariance = ReturnsEstimators().calculate_returns(asset_prices=self.data).cov()
        cla.allocate(covariance_matrix=covariance,
                     expected_asset_returns=expected_returns,
                     asset_names=self.data.columns)
        weights = cla.weights.values
        weights[weights <= 1e-15] = 0  # Convert very very small numbers to 0
        for turning_point in weights:
            assert (turning_point >= 0).all()
            assert len(turning_point) == self.data.shape[1]
            np.testing.assert_almost_equal(np.sum(turning_point), 1)
예제 #17
0
    def test_purge_excess(self):
        # pylint: disable=protected-access,invalid-name
        """
        Test purge number excess for very very small tolerance.
        """

        with self.assertRaises(IndexError):
            cla = CriticalLineAlgorithm(weight_bounds=(0, 1), calculate_expected_returns="mean")
            cla.allocate(asset_prices=self.data, solution='cla_turning_points', asset_names=self.data.columns)
            cla.weights = list(cla.weights.values)
            cla.weights = cla.weights*100
            cla._purge_num_err(tol=1e-18)
예제 #18
0
    def test_lambda_for_zero_matrices(self):
        # pylint: disable=protected-access,invalid-name
        """
        Test the computation of lambda when there are no bounded weights. The method
        should return None, None.
        """

        cla = CriticalLineAlgorithm(weight_bounds=(0, 1), calculate_expected_returns="mean")
        cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns)
        data = self.data.cov()
        data = data.values
        data[:, :] = 0
        x, y = cla._compute_lambda(covar_f_inv=data,
                                   covar_fb=data,
                                   mean_f=cla.expected_returns,
                                   w_b=None,
                                   asset_index=1,
                                   b_i=[[0], [1]])
        assert not x
        assert not y
예제 #19
0
    def test_expected_returns_equals_means(self):
        # pylint: disable=protected-access,invalid-name
        """
        Test for condition when expected returns equal the mean value.
        """

        cla = CriticalLineAlgorithm(weight_bounds=(0, 1), calculate_expected_returns="mean")
        cla.allocate(asset_prices=self.data, solution='min_volatility', asset_names=self.data.columns)
        data = self.data.copy()
        data.iloc[:, :] = 0.02320653
        cla._initialise(asset_prices=data, resample_by='B', expected_asset_returns=None, covariance_matrix=None)
        assert cla.expected_returns[-1, 0] == 1e-5