예제 #1
0
def test_signature_and_examples_are_saved_correctly(ols_model):
    model = ols_model.model
    X = ols_model.inference_dataframe
    signature_ = infer_signature(X)
    example_ = X[0:3, :]

    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.statsmodels.save_model(
                    model, path=path, signature=signature, input_example=example
                )
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert np.array_equal(_read_example(mlflow_model, path), example)
예제 #2
0
def test_model_export_with_schema_and_examples(spacy_model_with_data):
    spacy_model = spacy_model_with_data.model
    signature_ = infer_signature(spacy_model_with_data.inference_data)
    example_ = spacy_model_with_data.inference_data.head(3)
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.spacy.save_model(spacy_model,
                                        path=path,
                                        signature=signature,
                                        input_example=example)
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model,
                                              path) == example).all())
예제 #3
0
def test_signature_and_examples_are_saved_correctly(fastai_model):
    model = fastai_model.model
    signature_ = infer_signature(fastai_model.inference_dataframe)
    example_ = fastai_model.inference_dataframe.head(3)
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.fastai.save_model(model,
                                         path=path,
                                         signature=signature,
                                         input_example=example)
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model,
                                              path) == example).all())
예제 #4
0
def test_diviner_signature_and_examples_saved_correctly(
    grouped_prophet, diviner_data, model_path, use_signature, use_example
):

    prediction = grouped_prophet.forecast(horizon=20, frequency="D")
    signature = infer_signature(diviner_data.df, prediction) if use_signature else None
    example = diviner_data.df[0:5].copy(deep=False) if use_example else None
    mlflow.diviner.save_model(
        grouped_prophet, path=model_path, signature=signature, input_example=example
    )
    mlflow_model = Model.load(model_path)
    assert signature == mlflow_model.signature
    if example is None:
        assert mlflow_model.saved_input_example_info is None
    else:
        r_example = _read_example(mlflow_model, model_path).copy(deep=False)
        # NB: datetime values are implicitly cast, so this needs to be reverted.
        r_example["ds"] = pd.to_datetime(r_example["ds"], format=DS_FORMAT)
        np.testing.assert_array_equal(r_example, example)
예제 #5
0
def test_autolog_logs_signature_and_input_example(data_type):
    mlflow.sklearn.autolog(log_input_examples=True, log_model_signatures=True)

    X, y = get_iris()
    X = data_type(X)
    y = data_type(y)
    model = sklearn.linear_model.LinearRegression()

    with mlflow.start_run() as run:
        model.fit(X, y)
        model_path = os.path.join(run.info.artifact_uri, MODEL_DIR)

    model_conf = get_model_conf(run.info.artifact_uri)
    input_example = _read_example(model_conf, model_path)
    pyfunc_model = mlflow.pyfunc.load_model(model_path)

    assert model_conf.signature == infer_signature(X, model.predict(X[:5]))
    np.testing.assert_array_equal(pyfunc_model.predict(input_example),
                                  model.predict(X[:5]))
예제 #6
0
def test_signature_and_examples_are_saved_correctly(sequential_model, data):
    model = sequential_model
    signature_ = infer_signature(*data)
    example_ = data[0].head(3)
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.pytorch.save_model(model,
                                          path=path,
                                          signature=signature,
                                          input_example=example)
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model,
                                              path) == example).all())
예제 #7
0
def test_signature_and_examples_are_saved_correctly(gluon_model, model_data):
    model = gluon_model
    signature_ = infer_signature(model_data[0].asnumpy())
    example_ = model_data[0].asnumpy()[:3, ]
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.gluon.save_model(model,
                                        path=path,
                                        signature=signature,
                                        input_example=example)
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert np.array_equal(_read_example(mlflow_model, path),
                                          example)
예제 #8
0
def test_model_export_with_signature_and_examples(iris_df, spark_model_iris):
    _, _, iris_spark_df = iris_df
    signature_ = infer_signature(iris_spark_df)
    example_ = iris_spark_df.toPandas().head(3)
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                sparkm.save_model(spark_model_iris.model,
                                  path=path,
                                  signature=signature,
                                  input_example=example)
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model,
                                              path) == example).all())
예제 #9
0
def test_signature_and_examples_are_saved_correctly(sklearn_knn_model):
    data = sklearn_knn_model.inference_data
    model = sklearn_knn_model.model
    signature_ = infer_signature(data)
    example_ = data[:3, ]
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.sklearn.save_model(model,
                                          path=path,
                                          signature=signature,
                                          input_example=example)
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model,
                                              path) == example).all())
예제 #10
0
def test_signature_and_examples_are_saved_correctly(onnx_model, data, onnx_custom_env):
    model = onnx_model
    signature_ = infer_signature(*data)
    example_ = data[0].head(3)
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.onnx.save_model(
                    model,
                    path=path,
                    conda_env=onnx_custom_env,
                    signature=signature,
                    input_example=example,
                )
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model, path) == example).all())
예제 #11
0
def test_log_model_with_signature_and_examples(iris_df, spark_model_iris):
    _, _, iris_spark_df = iris_df
    signature_ = infer_signature(iris_spark_df)
    example_ = iris_spark_df.toPandas().head(3)
    artifact_path = "model"
    for signature in (None, signature_):
        for example in (None, example_):
            with mlflow.start_run():
                sparkm.log_model(spark_model_iris.model,
                                 artifact_path=artifact_path,
                                 signature=signature,
                                 input_example=example)
                artifact_uri = mlflow.get_artifact_uri()
                model_path = os.path.join(artifact_uri, artifact_path)
                mlflow_model = Model.load(model_path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model,
                                              model_path) == example).all())
def test_signature_and_examples_are_saved_correctly(iris_data, main_scoped_model_class):
    def test_predict(sk_model, model_input):
        return sk_model.predict(model_input) * 2
    data = iris_data
    signature_ = infer_signature(*data)
    example_ = data[0][:3, ]
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.pyfunc.save_model(path=path,
                                         artifacts={},
                                         python_model=main_scoped_model_class(test_predict),
                                         signature=signature,
                                         input_example=example)
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model, path) == example).all())
예제 #13
0
def test_pmdarima_signature_and_examples_saved_correctly(
        auto_arima_model, test_data, model_path, use_signature, use_example):

    # NB: Signature inference will only work on the first element of the tuple return
    prediction = auto_arima_model.predict(n_periods=20,
                                          return_conf_int=True,
                                          alpha=0.05)
    signature = infer_signature(test_data,
                                prediction[0]) if use_signature else None
    example = test_data[0:5].copy(deep=False) if use_example else None
    mlflow.pmdarima.save_model(auto_arima_model,
                               path=model_path,
                               signature=signature,
                               input_example=example)
    mlflow_model = Model.load(model_path)
    assert signature == mlflow_model.signature
    if example is None:
        assert mlflow_model.saved_input_example_info is None
    else:
        r_example = _read_example(mlflow_model, model_path).copy(deep=False)
        np.testing.assert_array_equal(r_example, example)
예제 #14
0
def test_signature_and_examples_saved_correctly(prophet_model):
    data = prophet_model.data
    model = prophet_model.model
    horizon_df = future_horizon_df(model, FORECAST_HORIZON)
    signature_ = infer_signature(data, model.predict(horizon_df))
    example_ = data[0:5].copy(deep=False)
    example_["y"] = pd.to_numeric(example_["y"])  # cast to appropriate precision
    for signature in (None, signature_):
        for example in (None, example_):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.prophet.save_model(
                    model, path=path, signature=signature, input_example=example
                )
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    r_example = _read_example(mlflow_model, path).copy(deep=False)
                    r_example["ds"] = pd.to_datetime(r_example["ds"], format=DS_FORMAT)
                    np.testing.assert_array_equal(r_example, example)
def test_schema_and_examples_are_save_correctly(saved_tf_iris_model):
    train_x, train_y = iris_data_utils.load_data()[0]
    X = pd.DataFrame(train_x)
    y = pd.Series(train_y)
    for signature in (None, infer_signature(X, y)):
        for example in (None, X.head(3)):
            with TempDir() as tmp:
                path = tmp.path("model")
                mlflow.tensorflow.save_model(
                    tf_saved_model_dir=saved_tf_iris_model.path,
                    tf_meta_graph_tags=saved_tf_iris_model.meta_graph_tags,
                    tf_signature_def_key=saved_tf_iris_model.signature_def_key,
                    path=path,
                    signature=signature,
                    input_example=example,
                )
                mlflow_model = Model.load(path)
                assert signature == mlflow_model.signature
                if example is None:
                    assert mlflow_model.saved_input_example_info is None
                else:
                    assert all((_read_example(mlflow_model, path) == example).all())
def test_autolog_logs_signature_and_input_example(data_type):
    mlflow.sklearn.autolog(log_input_examples=True, log_model_signatures=True)

    X, y = get_iris()
    X = data_type(X)
    y = data_type(y)
    model = sklearn.linear_model.LinearRegression()

    with mlflow.start_run() as run:
        model.fit(X, y)
        model_path = os.path.join(run.info.artifact_uri, MODEL_DIR)

    model_conf = get_model_conf(run.info.artifact_uri)
    input_example = _read_example(model_conf, model_path)
    pyfunc_model = mlflow.pyfunc.load_model(model_path)

    assert model_conf.signature == infer_signature(X, model.predict(X[:5]))

    # On GitHub Actions, `pyfunc_model.predict` and `model.predict` sometimes return
    # slightly different results:
    #
    # >>> pyfunc_model.predict(input_example)
    # [[0.171504346208176  ]
    #  [0.34346150441640155]  <- diff
    #  [0.06895096846585114]  <- diff
    #  [0.05925789882165455]
    #  [0.03424907823290102]]
    #
    # >>> model.predict(X[:5])
    # [[0.171504346208176  ]
    #  [0.3434615044164018 ]  <- diff
    #  [0.06895096846585136]  <- diff
    #  [0.05925789882165455]
    #  [0.03424907823290102]]
    #
    # As a workaround, use `assert_array_almost_equal` instead of `assert_array_equal`
    np.testing.assert_array_almost_equal(pyfunc_model.predict(input_example),
                                         model.predict(X[:5]))
예제 #17
0
def test_lgb_autolog_gets_input_example(bst_params):
    # we need to check the example input against the initial input given to train function.
    # we can't use the train_set fixture for this as it defines free_raw_data=False but this
    # feature should work even if it is True
    iris = datasets.load_iris()
    X = pd.DataFrame(iris.data[:, :2], columns=iris.feature_names[:2])
    y = iris.target
    dataset = lgb.Dataset(X, y, free_raw_data=True)

    mlflow.lightgbm.autolog(log_input_examples=True)
    lgb.train(bst_params, dataset)
    run = get_latest_run()

    model_path = os.path.join(run.info.artifact_uri, "model")
    model_conf = Model.load(os.path.join(model_path, "MLmodel"))

    input_example = _read_example(model_conf, model_path)

    assert input_example.equals(X[:5])

    pyfunc_model = mlflow.pyfunc.load_model(os.path.join(run.info.artifact_uri, "model"))

    # make sure reloading the input_example and predicting on it does not error
    pyfunc_model.predict(input_example)
예제 #18
0
def test_xgb_autolog_gets_input_example(bst_params):
    mlflow.xgboost.autolog(log_input_example=True)

    # we cannot use dtrain fixture, as the dataset must be constructed
    #   after the call to autolog() in order to get the input example
    iris = datasets.load_iris()
    X = pd.DataFrame(iris.data[:, :2], columns=iris.feature_names[:2])
    y = iris.target
    dataset = xgb.DMatrix(X, y)

    xgb.train(bst_params, dataset)
    run = get_latest_run()

    model_path = os.path.join(run.info.artifact_uri, "model")
    model_conf = Model.load(os.path.join(model_path, "MLmodel"))

    input_example = _read_example(model_conf, model_path)

    assert input_example.equals(X[:5])

    pyfunc_model = mlflow.pyfunc.load_model(os.path.join(run.info.artifact_uri, "model"))

    # make sure reloading the input_example and predicting on it does not error
    pyfunc_model.predict(input_example)
예제 #19
0
def test_parameter_search_estimators_produce_expected_outputs(
        cv_class, search_space, backend):
    mlflow.sklearn.autolog(log_input_examples=True, log_model_signatures=True)

    svc = sklearn.svm.SVC()
    cv_model = cv_class(svc, search_space, n_jobs=5, return_train_score=True)
    X, y = get_iris()

    def train_cv_model():
        if backend is None:
            cv_model.fit(X, y)
        else:
            with sklearn.utils.parallel_backend(backend=backend):
                cv_model.fit(X, y)

    with mlflow.start_run() as run:
        train_cv_model()
        run_id = run.info.run_id

    params, metrics, tags, artifacts = get_run_data(run_id)
    expected_cv_params = truncate_dict(
        stringify_dict_values(cv_model.get_params(deep=False)))
    expected_cv_params.update({
        "best_{}".format(param_name): str(param_value)
        for param_name, param_value in cv_model.best_params_.items()
    })
    assert params == expected_cv_params
    assert {
        TRAINING_SCORE: cv_model.score(X, y),
        "best_cv_score": cv_model.best_score_,
    }.items() <= metrics.items()
    assert tags == get_expected_class_tags(cv_model)
    assert MODEL_DIR in artifacts
    assert "best_estimator" in artifacts
    assert "cv_results.csv" in artifacts

    best_estimator = mlflow.sklearn.load_model(
        "runs:/{}/best_estimator".format(run_id))
    assert isinstance(best_estimator, sklearn.svm.SVC)
    cv_model = mlflow.sklearn.load_model("runs:/{}/{}".format(
        run_id, MODEL_DIR))
    assert isinstance(cv_model, cv_class)

    # Ensure that a signature and input example are produced for the best estimator
    best_estimator_conf = get_model_conf(run.info.artifact_uri,
                                         "best_estimator")
    assert best_estimator_conf.signature == infer_signature(
        X, best_estimator.predict(X[:5]))

    best_estimator_path = os.path.join(run.info.artifact_uri, "best_estimator")
    input_example = _read_example(best_estimator_conf, best_estimator_path)
    best_estimator.predict(
        input_example)  # Ensure that input example evaluation succeeds

    client = mlflow.tracking.MlflowClient()
    child_runs = client.search_runs(
        run.info.experiment_id,
        "tags.`mlflow.parentRunId` = '{}'".format(run_id))
    cv_results = pd.DataFrame.from_dict(cv_model.cv_results_)
    # We expect to have created a child run for each point in the parameter search space
    assert len(child_runs) == len(cv_results)

    # Verify that each set of parameter search results has a corresponding MLflow run
    # with the expected data
    for _, result in cv_results.iterrows():
        result_params = result.get("params", {})
        params_search_clause = " and ".join([
            "params.`{}` = '{}'".format(key, value)
            for key, value in result_params.items()
        ])
        search_filter = "tags.`mlflow.parentRunId` = '{}' and {}".format(
            run_id, params_search_clause)
        child_runs = client.search_runs(run.info.experiment_id, search_filter)
        assert len(child_runs) == 1
        child_run = child_runs[0]
        assert child_run.info.status == RunStatus.to_string(RunStatus.FINISHED)
        _, child_metrics, child_tags, _ = get_run_data(child_run.info.run_id)
        assert child_tags == get_expected_class_tags(svc)
        assert "mean_test_score" in child_metrics.keys()
        assert "std_test_score" in child_metrics.keys()
        # Ensure that we do not capture separate metrics for each cross validation split, which
        # would produce very noisy metrics results
        assert len([
            metric for metric in child_metrics.keys()
            if metric.startswith("split")
        ]) == 0