def dbfs_artifact_repo_factory(artifact_uri): """ Returns an ArtifactRepository subclass for storing artifacts on DBFS. This factory method is used with URIs of the form ``dbfs:/<path>``. DBFS-backed artifact storage can only be used together with the RestStore. In the special case where the URI is of the form `dbfs:/databricks/mlflow-tracking/<Exp-ID>/<Run-ID>/<path>', a DatabricksArtifactRepository is returned. This is capable of storing access controlled artifacts. :param artifact_uri: DBFS root artifact URI (string). :return: Subclass of ArtifactRepository capable of storing artifacts on DBFS. """ cleaned_artifact_uri = artifact_uri.rstrip('/') uri_scheme = get_uri_scheme(artifact_uri) if uri_scheme != 'dbfs': raise MlflowException( "DBFS URI must be of the form " "dbfs:/<path>, but received {uri}".format(uri=artifact_uri)) if is_databricks_acled_artifacts_uri(artifact_uri): return DatabricksArtifactRepository(cleaned_artifact_uri) elif mlflow.utils.databricks_utils.is_dbfs_fuse_available() \ and os.environ.get(USE_FUSE_ENV_VAR, "").lower() != "false" \ and not artifact_uri.startswith("dbfs:/databricks/mlflow-registry"): # If the DBFS FUSE mount is available, write artifacts directly to /dbfs/... using # local filesystem APIs file_uri = "file:///dbfs/{}".format( strip_prefix(cleaned_artifact_uri, "dbfs:/")) return LocalArtifactRepository(file_uri) return DbfsRestArtifactRepository(cleaned_artifact_uri)
def dbfs_artifact_repo_factory(artifact_uri): """ Returns an ArtifactRepository subclass for storing artifacts on DBFS. This factory method is used with URIs of the form ``dbfs:/<path>``. DBFS-backed artifact storage can only be used together with the RestStore. :param artifact_uri: DBFS root artifact URI (string). :return: Subclass of ArtifactRepository capable of storing artifacts on DBFS. """ cleaned_artifact_uri = artifact_uri.rstrip('/') if mlflow.utils.databricks_utils.is_dbfs_fuse_available() \ and os.environ.get(USE_FUSE_ENV_VAR, "").lower() != "false": # If the DBFS FUSE mount is available, write artifacts directly to /dbfs/... using # local filesystem APIs file_uri = "file:///dbfs/{}".format(strip_prefix(cleaned_artifact_uri, "dbfs:/")) return LocalArtifactRepository(file_uri) return DbfsRestArtifactRepository(cleaned_artifact_uri)
def dbfs_artifact_repo_factory(artifact_uri): """ Returns an ArtifactRepository subclass for storing artifacts on DBFS. This factory method is used with URIs of the form ``dbfs:/<path>``. DBFS-backed artifact storage can only be used together with the RestStore. In the special case where the URI is of the form `dbfs:/databricks/mlflow-tracking/<Exp-ID>/<Run-ID>/<path>', a DatabricksArtifactRepository is returned. This is capable of storing access controlled artifacts. :param artifact_uri: DBFS root artifact URI (string). :return: Subclass of ArtifactRepository capable of storing artifacts on DBFS. """ if not is_valid_dbfs_uri(artifact_uri): raise MlflowException( "DBFS URI must be of the form dbfs:/<path> or " + "dbfs://profile@databricks/<path>, but received " + artifact_uri ) cleaned_artifact_uri = artifact_uri.rstrip("/") db_profile_uri = get_databricks_profile_uri_from_artifact_uri(cleaned_artifact_uri) if is_databricks_acled_artifacts_uri(artifact_uri): return DatabricksArtifactRepository(cleaned_artifact_uri) elif ( mlflow.utils.databricks_utils.is_dbfs_fuse_available() and os.environ.get(USE_FUSE_ENV_VAR, "").lower() != "false" and not is_databricks_model_registry_artifacts_uri(artifact_uri) and (db_profile_uri is None or db_profile_uri == "databricks") ): # If the DBFS FUSE mount is available, write artifacts directly to # /dbfs/... using local filesystem APIs. # Note: it is possible for a named Databricks profile to point to the current workspace, # but we're going to avoid doing a complex check and assume users will use `databricks` # to mean the current workspace. Using `DbfsRestArtifactRepository` to access the current # workspace's DBFS should still work; it just may be slower. final_artifact_uri = remove_databricks_profile_info_from_artifact_uri(cleaned_artifact_uri) file_uri = "file:///dbfs/{}".format(strip_prefix(final_artifact_uri, "dbfs:/")) return LocalArtifactRepository(file_uri) return DbfsRestArtifactRepository(cleaned_artifact_uri)
def local_artifact_repo(local_artifact_root): from mlflow.utils.file_utils import path_to_local_file_uri return LocalArtifactRepository( artifact_uri=path_to_local_file_uri(local_artifact_root))