def dispatch(args): """Dispatch other commands to the appropriate model provided script.""" cmd = args.cmd model = args.model path = utils.get_package_dir(model) param = " ".join(args.param) # Get working dir if any. if args.workding_dir is not None: utils.update_working_dir(model, args.workding_dir) if args.workding_dir == '': args.workding_dir = None else: args.working_dir = utils.get_working_dir(model) # Get conda environment name if any. conda_env_name = utils.get_conda_env_name(model) # Check that the model is installed and has commands. utils.check_model_installed(model) entry = utils.load_description(model) if 'commands' not in entry or len(entry['commands']) == 0: raise utils.CommandNotFoundException(cmd, model) # Correct misspelled command if possible. matched_cmd = utils.get_misspelled_command(cmd, list(entry['commands'])) if matched_cmd is not None: cmd = matched_cmd # Check if cmd needs to use graphic display indicated in DESCRIPTION.yaml. meta = entry['meta'] if 'display' in meta and cmd in meta['display'] and os.environ.get( 'DISPLAY', '') == '': msg = "Graphic display is required but not available for command '{}'. Continue" yes = utils.yes_or_no(msg, cmd, yes=False) if not yes: msg = """ To enable DISPLAY be sure to connect to the server using 'ssh -X' or else connect to the server's desktop using a local X server like X2Go. """ sys.stdout.write(msg) sys.exit(1) # Obtain the default/chosen language for the package. lang = meta["languages"] # Deal with malformed 'languages' field lang_opts = {"python": "py", "R": "R"} for k in list(lang_opts): if lang in k: lang = lang_opts[k] break # Obtain the specified script file. script = cmd + "." + lang logger = logging.getLogger(__name__) logger.debug("Execute the script: " + os.path.join(path, script)) if cmd not in list(entry['commands']) or not os.path.exists( os.path.join(path, script)): raise utils.CommandNotFoundException(cmd, model) # Determine the interpreter to use # # .R => Rscript; .py => python, etc. interpreter = utils.interpreter(script) # Change working dir if needed if args.workding_dir is not None: script = os.path.join(path, script) path = args.workding_dir # _MLHUB_CMD_CWD: a environment variable indicates current working # directory where command `ml xxx` is invoked. # _MLHUB_MODEL_NAME: env variable indicates the name of the model. # # The above two env vars can be obtained by helper function, such # as utils.get_cmd_cwd(). And model package developer should be # use the helper function instead of the env vars directly. command = "export _MLHUB_CMD_CWD='{}'; export _MLHUB_MODEL_NAME='{}'; {} {} {}".format( os.getcwd(), model, interpreter, script, param) # Run script inside conda environment if specified if conda_env_name is not None: command = 'bash -c "source activate {}; {}"'.format( conda_env_name, command) logger.debug("(cd " + path + "; " + command + ")") proc = subprocess.Popen(command, shell=True, cwd=path, stderr=subprocess.PIPE) output, errors = proc.communicate() missing_r_dep = False if proc.returncode != 0: errors = errors.decode("utf-8") # Check if it is Python dependency unsatisfied dep_required = re.compile( r"ModuleNotFoundError: No module named '(.*)'").search(errors) # Check if R dependency unsatisified if dep_required is None: dep_required = re.compile( r"there is no package called ‘(.*)’").search(errors) if dep_required is not None: missing_r_dep = True # Check if required data resource not found data_required = re.compile( r"mlhub.utils.DataResourceNotFoundException").search(errors) if dep_required is not None: # Dependency unsatisfied dep_required = dep_required.group(1) logger.error("Dependency unsatisfied: {}\n{}".format( dep_required, errors)) raise utils.LackDependencyException(dep_required, missing_r_dep, model) elif data_required is not None: # Data not found raise utils.DataResourceNotFoundException() else: # Other unknown errors print("An error was encountered:\n") print(errors) else: # Suggest next step if not args.quiet: utils.print_next_step(cmd, description=entry, model=model)
def configure_model(args): """Ensure the user's environment is configured.""" # TODO: Add support for additional configuration if any except those # specified in MLHUB.yaml. # TODO: When fail, print out the failed dep, as well as installed # deps and non-installed deps. # TODO: Add support for specifying packages version. # TODO: Add more informative messages for different kinds of # dependencies. # Other ideas for configuration # # 1 Construct mlhub container (from Ubuntu) with known starting point # # 2 Assume the user is on a DSVM with free Azure account to test out. # # 3 Read dependencies: and language: and then install as required: # # 4 Assume model packager provides a configure.R script. This is a # override and no other configuration happens if this is # supplied. Alternatively this is viewed as a cop-out prividing # no support from mlhub for the model packager. The preference # would be to use the dependencies: tag to list the required R # or python packages. # # So the meta-code might be # # if file.exists(configure.XX): # XX configure.XX # else if language: == "Rscript": # packages <- dependencies: # install <- packages[!(packages %in% installed.packages()[,"Package"])] # if(length(new.packages)) install.packages(install) # else if language: == "python": # packages = dependencies: # cat pacakges > requirements.txt # pip install -r requirements.txt # if not args.model: # Configure MLHUB per se. # Includes bash completion and system pre-requisites if distro.id() in ['debian', 'ubuntu']: path = os.path.dirname(__file__) command = '/bin/bash {}'.format( os.path.join('scripts', 'dep', 'mlhub.sh')) proc = subprocess.Popen(command, shell=True, cwd=path, stderr=subprocess.PIPE) output, errors = proc.communicate() if proc.returncode != 0: errors = errors.decode("utf-8") print("\nAn error was encountered:\n") print(errors) raise utils.ConfigureFailedException() return # Model package configuration. model = args.model # Correct model name if possible. matched_model = utils.get_misspelled_pkg(model) if matched_model is not None: model = matched_model # Setup. pkg_dir = utils.get_package_dir(model) # Check if the model package is installed. utils.check_model_installed(model) # Install dependencies specified in MLHUB.yaml entry = utils.load_description(model) depspec = None if 'dependencies' in entry: depspec = entry['dependencies'] elif 'dependencies' in entry['meta']: depspec = entry['meta']['dependencies'] if depspec is not None: for spec in utils.flatten_mlhubyaml_deps(depspec): category = spec[0][-1] deplist = spec[1] # Category include: # ------------------------------------------------------------------------------ # category | action # -----------------|------------------------------------------------------------ # None | install package according to entry['meta']['languages'] # | if R, install.packages(xxx) from cran; # | if Python, pip install xxx # -----------------|------------------------------------------------------------ # system | apt-get install # sh | apt-get install # -----------------|------------------------------------------------------------ # r | install.packages(xxx) from cran, version can be specified # cran | install.packages(xxx) from cran, version can be specified # cran-2018-12-01 | install cran snapshot on 2018-12-01 # github | devtools::install_github from github # -----------------|------------------------------------------------------------ # python | apt-get install python-xxx # python3 | apt-get install python3-xxx # pip | pip install # pip3 | pip3 install # conda | conda install # -----------------|------------------------------------------------------------ # files | download files # -----------------|------------------------------------------------------------ # ----- Determine deps by language ----- if category is None: lang = entry['meta']['languages'].lower() if lang == 'r': utils.install_r_deps(deplist, model, source='cran') elif 'python'.startswith(lang): utils.install_python_deps(deplist, model, source='pip') # ----- System deps ----- elif category == 'system' or 'shell'.startswith(category): utils.install_system_deps(deplist) # ----- R deps ----- elif category == 'r': utils.install_r_deps(deplist, model, source='cran') elif category == 'cran' or category == 'github' or category.startswith( 'cran-'): utils.install_r_deps(deplist, model, source=category) # ----- Python deps ----- elif category.startswith('python') or category.startswith( 'pip') or category == 'conda': utils.install_python_deps(deplist, model, source=category) # ----- Files ----- elif 'files'.startswith(category): utils.install_file_deps(deplist, model) # Run additional configure script if any. conf = utils.configure(pkg_dir, "configure.sh", args.quiet) or True conf = utils.configure(pkg_dir, "configure.R", args.quiet) or conf conf = utils.configure(pkg_dir, "configure.py", args.quiet) or conf if not conf: if depspec is not None: msg = ("No configuration script provided for this model. " "The following dependencies are required:\n") print(msg) print(yaml.dump(depspec)) else: print("No configuration provided (maybe none is required).") # Update working dir if any. if args.workding_dir is not None: utils.update_working_dir(model, args.workding_dir) # Suggest next step. if not args.quiet: utils.print_next_step('configure', model=model)
def install_model(args): """Install a model. Args: args: Command line args parsed by argparse. args.model (str): mlm/zip path, mlm/zip url, model name, GitHub repo, like mlhubber/mlhub, or MLHUB.yaml on github repo, like mlhubber/audit:doc/MLHUB.yaml. """ logger = logging.getLogger(__name__) logger.info('Install a model.') logger.debug('args: {}'.format(args)) model = args.model # model pkg name location = args.model # pkg file path or URL version = None # model pkg version mlhubyaml = None # MLHUB.yaml path or URL # Obtain the model URL if not a local file. if not utils.is_archive(model) and not utils.is_url( model) and '/' not in model: # Model package name, which can be found in mlhub repo. # Like: # $ ml install audit # # We assume the URL got from mlhub repo is a link to a mlm/zip/tar file # or a GitHub repo reference or MLHUB.yaml. # Correct model name if possible. matched_model = utils.get_misspelled_pkg(model) if matched_model is not None: model = matched_model # Get model pkg meta data from mlhub repo. location, version, meta_list = utils.get_model_info_from_repo( model, args.mlhub) # Update bash completion list. utils.update_model_completion({e['meta']['name'] for e in meta_list}) if not utils.is_archive(location): # Model from GitHub. # Like: # $ ml install mlhubber/audit # $ ml install mlhubber/audit:doc/MLHUB.yaml # $ ml install https://github.com/mlhubber/audit/... mlhubyaml = utils.get_pkgyaml_github_url(location) # URL to MLHUB.yaml location = utils.get_githubrepo_zip_url(location) logger.debug("location: {}".format(location)) logger.debug("mlhubyaml: {}".format(mlhubyaml)) # Determine the path of downloaded/existing model package file pkgfile = None if utils.is_archive(location): pkgfile = os.path.basename(location) # pkg file name elif utils.is_url(location): pkgfile = utils.get_url_filename(location) # Query archive type if not available from file name per se. while pkgfile is None or not utils.is_archive(pkgfile): print( "The file type cannot be determined.\n" "Please give it a file name with explicit valid archive extension: ", end='') pkgfile = input() uncompressdir = pkgfile[:pkgfile.rfind( '.')] # Dir Where pkg file is extracted # Installation. entry = None # Meta info read from MLHUB.yaml with tempfile.TemporaryDirectory() as mlhubtmpdir: # Determine the local path of the model package if utils.is_url(location): local = os.path.join(mlhubtmpdir, pkgfile) # downloaded else: local = location # local file path uncompressdir = os.path.join(mlhubtmpdir, uncompressdir) # Obtain model version. if version is None: if utils.ends_with_mlm( pkgfile): # Get version number from MLM file name. model, version = utils.interpret_mlm_name(pkgfile) elif not utils.is_github_url( location): # Get MLHUB.yaml inside the archive file. if utils.is_url( location ): # Download the package file because it is not from GitHub. utils.download_model_pkg(location, local, pkgfile, args.quiet) if not args.quiet: print("Extracting '{}' ...\n".format(pkgfile)) utils.unpack_with_promote(local, uncompressdir, valid_name=pkgfile) mlhubyaml = utils.get_available_pkgyaml( uncompressdir) # Path to MLHUB.yaml if mlhubyaml is not None: # Get version number from MLHUB.yaml entry = utils.read_mlhubyaml(mlhubyaml) meta = entry["meta"] model = meta["name"] version = meta["version"] utils.update_model_completion({model }) # Update bash completion list. # Check if model is already installed. install_path = utils.get_package_dir(model) # Installation path if os.path.exists(install_path): installed_version = utils.load_description( model)['meta']['version'] # Ensure version number is string. installed_version = str(installed_version) version = str(version) if StrictVersion(installed_version) > StrictVersion(version): yes = utils.yes_or_no( "Downgrade '{}' from version '{}' to version '{}'", model, installed_version, version, yes=True) elif StrictVersion(installed_version) == StrictVersion(version): yes = utils.yes_or_no( "Replace '{}' version '{}' with version '{}'", model, installed_version, version, yes=True) else: yes = utils.yes_or_no( "Upgrade '{}' from version '{}' to version '{}'", model, installed_version, version, yes=True) if not yes: sys.exit(0) else: print() shutil.rmtree(install_path) # Uncompress package file. if not os.path.exists( uncompressdir ): # Model pkg mlm or GitHub pkg has not unzipped yet. if utils.is_url(location): # Download the package file if needed. utils.download_model_pkg(location, local, pkgfile, args.quiet) if not args.quiet: print("Extracting '{}' ...\n".format(pkgfile)) utils.unpack_with_promote(local, uncompressdir, valid_name=pkgfile) # Install package files. # # Because it is time-consuming to download all package files one-by-one , we # download the whole zipball from the repo first, then re-arrange the files # according to `dependencies` -> `files` in MLHUB.yaml if any. # Find if any files specified in MLHUB.yaml if mlhubyaml is None: # MLM file which can obtain version number from it name. mlhubyaml = utils.get_available_pkgyaml(uncompressdir) entry = utils.read_mlhubyaml(mlhubyaml) depspec = None if 'dependencies' in entry: depspec = entry['dependencies'] elif 'dependencies' in entry['meta']: depspec = entry['meta']['dependencies'] file_spec = None if depspec is not None and 'files' in depspec: file_spec = {'files': depspec['files']} elif 'files' in entry: file_spec = {'files': entry['files']} if file_spec is not None: # install package files if they are specified in MLHUB.yaml # MLHUB.yaml should always be at the package root. os.mkdir(install_path) if utils.is_url( mlhubyaml ): # We currently only support MLHUB.yaml specified on GitHub. if mlhubyaml.startswith("https://api"): urllib.request.urlretrieve( json.loads(urllib.request.urlopen( mlhubyaml).read())['download_url'], os.path.join(install_path, MLHUB_YAML)) else: urllib.request.urlretrieve( mlhubyaml, os.path.join(install_path, MLHUB_YAML)) else: shutil.move(mlhubyaml, install_path) # All package files except MLHUB.yaml should be specified in 'files' of MLHUB.yaml try: utils.install_file_deps( utils.flatten_mlhubyaml_deps(file_spec)[0][1], model, downloadir=uncompressdir) except utils.ModePkgInstallationFileNotFoundException as e: if os.path.exists(install_path): shutil.rmtree(install_path) raise else: # Otherwise, put all files under package dir. # **Note** Here we must make sure <instal_path> does not exist. # Otherwise, <unzipdir> will be inside <install_path> shutil.move(uncompressdir, install_path) # Update bash completion list. utils.update_command_completion( set(utils.load_description(model)['commands'])) # Update working dir if any. if args.workding_dir is not None: utils.update_working_dir(model, args.workding_dir) if not args.quiet: # Informative message about the size of the installed model. print("Installed '{}' into '{}' ({:,} bytes).".format( model, install_path, utils.dir_size(install_path))) # Suggest next step. README or DOWNLOAD utils.print_next_step('install', model=model)
def configure_model(args): """Ensure the user's environment is configured.""" # TODO: Add support for additional configuration if any except those # specified in MLHUB.yaml. # TODO: When fail, print out the failed dep, as well as installed # deps and non-installed deps. # TODO: Add support for specifying packages version. # TODO: Add more informative messages for different kinds of # dependencies. # Other ideas for configuration # # 1 Construct mlhub container (from Ubuntu) with known starting point # # 2 Assume the user is on a DSVM with free Azure account to test out. # # 3 Read dependencies: and language: and then install as required: # # 4 Assume model packager provides a configure.R script. This is a # override and no other configuration happens if this is # supplied. Alternatively this is viewed as a cop-out providing # no support from mlhub for the model packager. The preference # would be to use the dependencies: tag to list the required R # or python packages. # # So the meta-code might be # # if file.exists(configure.XX): # XX configure.XX # else if language: == "Rscript": # packages <- dependencies: # install <- packages[!(packages %in% installed.packages()[,"Package"])] # if(length(new.packages)) install.packages(install) # else if language: == "python": # packages = dependencies: # cat packages > requirements.txt # pip install -r requirements.txt # YES = args.y | args.yes # Avoid 403 errors which result when the header identifies itself # as python urllib or is empty and thus the web site assumes it is # a robot. We are not a robot but a user downloading a file. This # will ensure gitlab is okay with retrieving from a URL by adding # a header rather than no header. TODO move to using Requests. opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) if not args.model: # Configure MLHUB per se. # Includes bash completion and system pre-requisites if distro.id() in ["debian", "ubuntu"]: path = os.path.dirname(__file__) env_var = "export _MLHUB_OPTION_YES='y'; " if YES else "" env_var += 'export _MLHUB_PYTHON_EXE="{}"; '.format(sys.executable) script = os.path.join("scripts", "dep", "mlhub.sh") command = "{}{} {}".format(env_var, BASH_CMD, script) proc = subprocess.Popen( command, shell=True, cwd=path, stderr=subprocess.PIPE ) output, errors = proc.communicate() if proc.returncode != 0: raise utils.ConfigureFailedException(errors.decode("utf-8")) return # Model package configuration. model = args.model # Correct model name if possible. matched_model = utils.get_misspelled_pkg(model) if matched_model is not None: model = matched_model # Setup. pkg_dir = utils.get_package_dir(model) # Check if the model package is installed. utils.check_model_installed(model) # Install dependencies specified in MLHUB.yaml entry = utils.load_description(model) depspec = None if "dependencies" in entry: depspec = entry["dependencies"] elif "dependencies" in entry["meta"]: depspec = entry["meta"]["dependencies"] if depspec is not None: for spec in utils.flatten_mlhubyaml_deps(depspec): category = spec[0][-1] deplist = spec[1] # Category include: # ------------------------------------------------------------------------------ # category | action # -----------------|------------------------------------------------------------ # None | install package according to entry['meta']['languages'] # | if R, install.packages(xxx) from cran; # | if Python, pip install xxx # -----------------|------------------------------------------------------------ # system | apt-get install # sh | apt-get install # -----------------|------------------------------------------------------------ # r | install.packages(xxx) from cran, version can be specified # cran | install.packages(xxx) from cran, version can be specified # cran-2018-12-01 | install cran snapshot on 2018-12-01 # github | devtools::install_github from github # -----------------|------------------------------------------------------------ # python | apt-get install python-xxx # python3 | apt-get install python3-xxx # pip | pip install # pip3 | pip3 install # conda | conda install # -----------------|------------------------------------------------------------ # files | download files # -----------------|------------------------------------------------------------ # ----- Determine deps by language ----- if category is None: lang = entry["meta"]["languages"].lower() if lang == "r": utils.install_r_deps( deplist, model, source="cran", yes=YES ) elif "python".startswith(lang): utils.install_python_deps( deplist, model, source="pip", yes=YES ) # ----- System deps ----- elif category == "system" or "shell".startswith(category): utils.install_system_deps(deplist, yes=YES) # ----- R deps ----- elif category == "r": utils.install_r_deps(deplist, model, source="cran", yes=YES) elif ( category == "cran" or category == "github" or category.startswith("cran-") ): utils.install_r_deps(deplist, model, source=category, yes=YES) # ----- Python deps ----- elif ( category.startswith("python") or category.startswith("pip") or category == "conda" ): utils.install_python_deps( deplist, model, source=category, yes=YES ) # ----- Files ----- elif "files".startswith(category): utils.install_file_deps(deplist, model, key=args.i, yes=YES) # Run additional configure script if any. conf = utils.configure(pkg_dir, "configure.sh", args.quiet) or True conf = utils.configure(pkg_dir, "configure.R", args.quiet) or conf conf = utils.configure(pkg_dir, "configure.py", args.quiet) or conf if not conf: if depspec is not None: msg = ( "No configuration script provided for this model. " "The following dependencies are required:\n" ) print(msg) print(yaml.dump(depspec)) else: print("No configuration provided (maybe none is required).") # Update working dir if any. if args.working_dir is not None: utils.update_working_dir(model, args.working_dir) # Suggest next step. if not args.quiet: utils.print_next_step("configure", model=model)
def install_model(args): """Install a model. Args: args: Command line args parsed by argparse. args.model (str): mlm/zip path, mlm/zip url, model name, GitHub repo, like mlhubber/mlhub, or MLHUB.yaml on github repo, like mlhubber/audit:doc/MLHUB.yaml. """ logger = logging.getLogger(__name__) logger.info("Install a model.") logger.debug(f"args: {args}") # Avoid 403 errors which result when the header identifies itself # as python urllib or is empty and thus the web site assumes it is # a robot. We are not a robot but a user downloading a file. This # will ensure gitlab is okay with retrieving from a URL by adding # a header rather than no header. TODO move to using Requests. opener = urllib.request.build_opener() opener.addheaders = [('User-agent', 'Mozilla/5.0')] urllib.request.install_opener(opener) model = args.model # model pkg name location = args.model # pkg file path or URL key = args.i # SSH key version = None # model pkg version mlhubyaml = None # MLHUB.yaml path or URL repo_obj = None # RepoTypeURL object for related URL interpretation maybe_private = False # Maybe private repo # Obtain the model URL if not a local file. if ( not utils.is_archive_file(model) and not utils.is_url(model) and "/" not in model ): # Model package name, which can be found in mlhub repo. # Like: # $ ml install audit # # We assume the URL got from mlhub repo is a link to a mlm/zip/tar file # or a GitHub repo reference or MLHUB.yaml. # Correct model name if possible. matched_model = utils.get_misspelled_pkg(model) if matched_model is not None: model = matched_model # Get model pkg meta data from mlhub repo. location, version, meta_list = utils.get_model_info_from_repo( model, args.mlhub ) # Update bash completion list. utils.update_model_completion({e["meta"]["name"] for e in meta_list}) if not utils.is_archive_file(location): # Model from a repo such as GitHub, GitLab, Bitbucket etc. # # Possible options are: # $ ml install mlhubber/audit # latest commit on the master branch of GitHub repo mlhubber/audit # $ ml install mlhubber/audit@dev # latest commit on the dev branch of GitHub repo mlhubber/audit # $ ml install mlhubber/audit@0001ea4 # commit 0001ea4 of mlhubber/audit # $ ml install mlhubber/audit:doc/MLHUB.yaml # latest commit on master, but a specified YAML file # $ ml install https://github.com/mlhubber/audit/... # Arbitrary GitHub link address # # $ ml install github:mlhubber/audit # GitHub repo, the same as ml install mlhubber/audit # # $ ml install gitlab:mlhubber/audit@2fe89kh:doc/MLHUB.yaml # GitLab repo # $ ml install https://https://gitlab.com/mlhubber/audit/... # GitLab repo # # $ ml install bitbucket:mlhubber/audit # BitBucket repo # $ ml install https://bitbucket.org/mlhubber/audit/... # BitBucket repo repo_obj = utils.RepoTypeURL.get_repo_obj(location) try: mlhubyaml = repo_obj.get_pkg_yaml_url() location = repo_obj.compose_repo_zip_url() logger.debug(f"location: {location}") logger.debug(f"mlhubyaml: {mlhubyaml}") except utils.DescriptionYAMLNotFoundException: # Maybe private repo maybe_private = True pass # Determine the path of downloaded/existing model package file pkgfile = None if maybe_private: # Maybe private repo pkgfile = repo_obj.repo elif utils.is_archive_file(location): pkgfile = os.path.basename(location) # pkg file name elif utils.is_url(location): pkgfile = utils.get_url_filename(location) # Query archive type if not available from file name per se. if not maybe_private: while pkgfile is None or not utils.is_archive_file(pkgfile): print( "The file type cannot be determined.\n" "Please give it a file name with explicit valid archive extension: ", end="", ) pkgfile = input() if maybe_private: uncompressdir = pkgfile else: uncompressdir = pkgfile[ : pkgfile.rfind(".") ] # Dir Where pkg file is extracted # Installation. entry = None # Meta info read from MLHUB.yaml with tempfile.TemporaryDirectory() as mlhubtmpdir: # Determine the local path of the model package if maybe_private: local = None elif utils.is_url(location): local = os.path.join(mlhubtmpdir, pkgfile) # downloaded else: local = location # local file path uncompressdir = os.path.join(mlhubtmpdir, uncompressdir) # Obtain model version. if version is None: if utils.ends_with_mlm( pkgfile ): # Get version number from MLM file name. model, version = utils.interpret_mlm_name(pkgfile) elif not repo_obj: # Get MLHUB.yaml inside the archive file. if utils.is_url( location ): # Download the package file because it is not from GitHub. utils.download_model_pkg( location, local, pkgfile, args.quiet ) if not args.quiet: print("Extracting '{}' ...\n".format(pkgfile)) utils.unpack_with_promote( local, uncompressdir, valid_name=pkgfile ) mlhubyaml = utils.get_available_pkgyaml( uncompressdir ) # Path to MLHUB.yaml elif maybe_private: identity_env = ( "GIT_SSH_COMMAND='ssh -i {}' ".format(key) if key else "" ) command = "cd {}; {}git clone {}; cd {}; git checkout {}".format( mlhubtmpdir, identity_env, repo_obj.get_ssh_clone_url(), repo_obj.repo, repo_obj.ref, ) proc = subprocess.Popen( command, shell=True, stderr=subprocess.PIPE ) output, errors = proc.communicate() if proc.returncode != 0: raise utils.InstallFailedException(errors.decode("utf-8")) if repo_obj.path: mlhubyaml = os.path.join(uncompressdir, repo_obj.path) else: mlhubyaml = utils.get_available_pkgyaml( uncompressdir ) # Path to MLHUB.yaml if mlhubyaml is not None: # Get version number from MLHUB.yaml entry = utils.read_mlhubyaml(mlhubyaml) meta = entry["meta"] model = meta["name"] version = meta["version"] utils.update_model_completion( {model} ) # Update bash completion list. # Check if model is already installed. install_path = utils.get_package_dir(model) # Installation path if os.path.exists(install_path): installed_version = utils.load_description(model)["meta"][ "version" ] # Ensure version number is string. installed_version = str(installed_version) version = str(version) if StrictVersion(installed_version) > StrictVersion(version): yes = utils.yes_or_no( "Downgrade '{}' from version '{}' to version '{}'", model, installed_version, version, yes=True, ) elif StrictVersion(installed_version) == StrictVersion(version): yes = utils.yes_or_no( "Replace '{}' version '{}' with version '{}'", model, installed_version, version, yes=True, ) else: yes = utils.yes_or_no( "Upgrade '{}' from version '{}' to version '{}'", model, installed_version, version, yes=True, ) if not yes: # Suggest next step before exiting, as if an install has just happened. utils.print_next_step("install", model=model) sys.exit(0) else: print() shutil.rmtree(install_path) # Uncompress package file. if not os.path.exists( uncompressdir ): # Model pkg mlm or GitHub pkg has not unzipped yet. if utils.is_url(location): # Download the package file if needed. utils.download_model_pkg(location, local, pkgfile, args.quiet) if not args.quiet: print("Extracting '{}' ...\n".format(pkgfile)) utils.unpack_with_promote(local, uncompressdir, valid_name=pkgfile) # Install package files. # # Because it is time-consuming to download all package files one-by-one , we # download the whole zipball from the repo first, then re-arrange the files # according to `dependencies` -> `files` in MLHUB.yaml if any. # Find if any files specified in MLHUB.yaml if ( mlhubyaml is None ): # MLM file which can obtain version number from it name. mlhubyaml = utils.get_available_pkgyaml(uncompressdir) entry = utils.read_mlhubyaml(mlhubyaml) depspec = None if "dependencies" in entry: depspec = entry["dependencies"] elif "dependencies" in entry["meta"]: depspec = entry["meta"]["dependencies"] file_spec = None if depspec is not None and "files" in depspec: file_spec = {"files": depspec["files"]} elif "files" in entry: file_spec = {"files": entry["files"]} if ( file_spec is not None ): # install package files if they are specified in MLHUB.yaml # MLHUB.yaml should always be at the package root. os.mkdir(install_path) if utils.is_url( mlhubyaml ): # We currently only support MLHUB.yaml specified on GitHub. if mlhubyaml.startswith("https://api"): urllib.request.urlretrieve( json.loads(urllib.request.urlopen(mlhubyaml).read())[ "download_url" ], os.path.join(install_path, MLHUB_YAML), ) else: urllib.request.urlretrieve( mlhubyaml, os.path.join(install_path, MLHUB_YAML) ) else: shutil.move(mlhubyaml, install_path) # All package files except MLHUB.yaml should be specified in 'files' of MLHUB.yaml try: utils.install_file_deps( utils.flatten_mlhubyaml_deps(file_spec)[0][1], model, downloadir=uncompressdir, yes=True, ) except utils.ModelPkgInstallationFileNotFoundException: if os.path.exists(install_path): shutil.rmtree(install_path) raise else: # Otherwise, put all files under package dir. # **Note** Here we must make sure <install_path> does not exist. # Otherwise, <unzipdir> will be inside <install_path> shutil.move(uncompressdir, install_path) # Update bash completion list. utils.update_command_completion( set(utils.load_description(model)["commands"]) ) # Update working dir if any. if args.working_dir is not None: utils.update_working_dir(model, args.working_dir) if not args.quiet: # Informative message about the size of the installed model. msg = f"Found '{model}' version {version}.\n\nInstalled '{model}' " msg += f"into '{install_path}/' ({utils.dir_size(install_path):,} bytes)." print(msg) # Suggest next step. README or DOWNLOAD utils.print_next_step("install", model=model)
def dispatch(args): """Dispatch other commands to the appropriate model provided script.""" cmd = args.cmd model = args.model path = utils.get_package_dir(model) param = " ".join(args.param) # Get working dir if any. if args.workding_dir is not None: utils.update_working_dir(model, args.workding_dir) if args.workding_dir == '': args.workding_dir = None else: args.working_dir = utils.get_working_dir(model) # Get conda environment name if any. conda_env_name = utils.get_conda_env_name(model) # Check that the model is installed and has commands. utils.check_model_installed(model) entry = utils.load_description(model) if 'commands' not in entry or len(entry['commands']) == 0: raise utils.CommandNotFoundException(cmd, model) # Correct misspelled command if possible. matched_cmd = utils.get_misspelled_command(cmd, list(entry['commands'])) if matched_cmd is not None: cmd = matched_cmd # Check if cmd needs to use graphic display indicated in DESCRIPTION.yaml. meta = entry['meta'] if 'display' in meta and cmd in meta['display'] and os.environ.get( 'DISPLAY', '') == '': msg = "Graphic display is required but not available for command '{}'. Continue" yes = utils.yes_or_no(msg, cmd, yes=False) if not yes: msg = """ To enable DISPLAY be sure to connect to the server using 'ssh -X' or else connect to the server's desktop using a local X server like X2Go. """ sys.stdout.write(msg) sys.exit(1) # Obtain the default/chosen language for the package. lang = meta["languages"] # Deal with malformed 'languages' field lang_opts = {"python": "py", "R": "R"} for k in list(lang_opts): if lang in k: lang = lang_opts[k] break # Obtain the specified script file. script = cmd + "." + lang logger = logging.getLogger(__name__) logger.debug("Execute the script: " + os.path.join(path, script)) if cmd not in list(entry['commands']) or not os.path.exists( os.path.join(path, script)): raise utils.CommandNotFoundException(cmd, model) # Determine the interpreter to use # # .R => Rscript; .py => python, etc. interpreter = utils.interpreter(script) # Change working dir if needed if args.workding_dir is not None: script = os.path.join(path, script) path = args.workding_dir # Handle python environment python_pkg_bin = None python_pkg_path = None if script.endswith('py'): python_pkg_base = os.path.sep.join( [utils.get_package_dir(model), '.python']) python_pkg_path = python_pkg_base + site.USER_SITE python_pkg_bin = python_pkg_base + site.USER_BASE + '/bin' # TODO: Make sure to document: # $ sudo apt-get install -y python3-pip # $ /usr/bin/pip3 install mlhub # Since in DSVM, the default pip is conda's pip, so if we stick to # use system's command, then the installation of MLHub itself should # be completed via system's pip, otherwise, MLHub will not work. if sys.executable != SYS_PYTHON_CMD: python_pkg_path = python_pkg_base + site.getsitepackages()[0] python_pkg_bin = python_pkg_base + site.PREFIXES[0] + '/bin' if utils.get_sys_python_pkg_usage(model): utils.print_on_stderr(MSG_INCOMPATIBLE_PYTHON_ENV, model) # _MLHUB_CMD_CWD: a environment variable indicates current working # directory where command `ml xxx` is invoked. # _MLHUB_MODEL_NAME: env variable indicates the name of the model. # # The above two env vars can be obtained by helper function, such # as utils.get_cmd_cwd(). And model package developer should be # use the helper function instead of the env vars directly. env_var = "export _MLHUB_CMD_CWD='{}'; ".format(os.getcwd()) env_var += "export _MLHUB_MODEL_NAME='{}'; ".format(model) env_var += 'export _MLHUB_PYTHON_EXE="{}"; '.format(sys.executable) env_var += "export PYTHONPATH='{}'; ".format( python_pkg_path) if python_pkg_path else "" env_var += "export PATH=\"{}:$PATH\"; ".format( python_pkg_bin) if python_pkg_bin else "" command = "{}{} {} {}".format(env_var, interpreter, script, param) # Run script inside conda environment if specified if conda_env_name is not None: command = '{} -c "source activate {}; {}"'.format( BASH_CMD, conda_env_name, command) logger.debug("(cd " + path + "; " + command + ")") proc = subprocess.Popen(command, shell=True, cwd=path, stderr=subprocess.PIPE) output, errors = proc.communicate() missing_r_dep = False if proc.returncode != 0: errors = errors.decode("utf-8") # Check if it is Python dependency unsatisfied dep_required = re.compile( r"ModuleNotFoundError: No module named '(.*)'").search(errors) # Check if R dependency unsatisified if dep_required is None: dep_required = re.compile( r"there is no package called ‘(.*)’").search(errors) if dep_required is not None: missing_r_dep = True # Check if required data resource not found data_required = re.compile( r"mlhub.utils.DataResourceNotFoundException").search(errors) if dep_required is not None: # Dependency unsatisfied dep_required = dep_required.group(1) logger.error("Dependency unsatisfied: {}\n{}".format( dep_required, errors)) raise utils.LackDependencyException(dep_required, missing_r_dep, model) elif data_required is not None: # Data not found raise utils.DataResourceNotFoundException() else: # Other unknown errors print("An error was encountered:\n") print(errors) else: # Suggest next step if not args.quiet: utils.print_next_step(cmd, description=entry, model=model)