예제 #1
0
def load_data_info(blending_data=None,
                   valid=None,
                   model_path=None,
                   n_hidden=256,
                   step=None,
                   beat_gt=None,
                   beat_subdiv=None,
                   model_out=".",
                   acoustic='kelz',
                   early_exit=0.001,
                   diagRNN=False,
                   ablate_list=[],
                   noise=None,
                   noise_gauss=False):
    """
    Set up the global parameter dictionaries to run Bayesian Optimization with the given
    settings. This is called by optimize_sk.py.
    """
    global global_params
    global data_dict
    global model_dict

    data_dict['valid'] = valid

    with gzip.open(blending_data, 'rb') as file:
        data_dict['blending_data'] = pickle.load(file)

    if noise is None:
        data_dict['noise'] = (data_dict['blending_data']['noise'] if 'noise'
                              in data_dict['blending_data'] else None)
        data_dict['noise_gauss'] = (data_dict['blending_data']['noise_gauss']
                                    if 'noise_gauss'
                                    in data_dict['blending_data'] else False)
    else:
        data_dict['noise'] = noise
        data_dict['noise_gauss'] = noise_gauss

    model_param = make_model_param()
    model_param['n_hidden'] = n_hidden
    model_param['n_steps'] = 1  # To generate 1 step at a time
    model_param['with_onsets'] = data_dict['blending_data']['with_onsets']
    if diagRNN:
        model_param['cell_type'] = "diagLSTM"

    # Build model object
    model_dict['model'] = Model(model_param)
    model_dict['sess'], _ = model_dict['model'].load(model_path,
                                                     model_path=model_path)

    global_params['step'] = step
    global_params['beat_gt'] = beat_gt
    global_params['beat_subdiv'] = beat_subdiv
    global_params['model_out'] = model_out
    global_params['acoustic'] = acoustic
    global_params['early_exit'] = early_exit
    global_params['ablate'] = ablate_list
예제 #2
0
def load_data_info(gt=None,
                   beam=None,
                   valid=None,
                   model_path=None,
                   n_hidden=256,
                   step=None,
                   model_out=".",
                   acoustic='kelz',
                   early_exit=0.001,
                   diagRNN=False):
    global global_params
    global data_dict
    global model_dict

    if gt is not None:
        with gzip.open(gt, "rb") as file:
            data_dict['gt'] = pickle.load(file)

    if beam is not None:
        with gzip.open(beam, "rb") as file:
            data_dict['beam'] = pickle.load(file)

    data_dict['valid'] = valid

    model_param = make_model_param()
    model_param['n_hidden'] = n_hidden
    model_param['n_steps'] = 1  # To generate 1 step at a time
    if diagRNN:
        model_param['cell_type'] = "diagLSTM"

    # Build model object
    model_dict['model'] = Model(model_param)
    model_dict['sess'], _ = model_dict['model'].load(model_path,
                                                     model_path=model_path)

    global_params['step'] = step
    global_params['model_out'] = model_out
    global_params['acoustic'] = acoustic
    global_params['early_exit'] = early_exit
예제 #3
0
    except:
        max_len = None
        section = None

    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    # Load model
    model_param = make_model_param()
    model_param['n_hidden'] = args.hidden
    model_param['n_steps'] = 1  # To generate 1 step at a time
    if args.diagRNN:
        model_param['cell_type'] = "diagLSTM"

    # Build model object
    model = Model(model_param)
    sess, _ = model.load(args.model, model_path=args.model)

    # Load data
    if args.MIDI.endswith(".mid"):
        data = dataMaps.DataMaps()
        data.make_from_file(args.MIDI,
                            args.step,
                            section=section,
                            acoustic_model=args.acoustic)

        # Decode
        X, Y, D = get_weight_data(data.target,
                                  data.input,
                                  model,
                                  sess,