def test_bayesian_optimizer_on_simple_2d_quadratic_function_cold_start(
            self):
        """ Tests the bayesian optimizer on a simple quadratic function with no prior data.

        """
        objective_function_config = objective_function_config_store.get_config_by_name(
            '2d_quadratic_concave_up')
        objective_function = ObjectiveFunctionFactory.create_objective_function(
            objective_function_config)

        optimization_problem = OptimizationProblem(
            parameter_space=objective_function.parameter_space,
            objective_space=objective_function.output_space,
            objectives=[Objective(name='y', minimize=True)])

        bayesian_optimizer = BayesianOptimizer(
            optimization_problem=optimization_problem,
            optimizer_config=bayesian_optimizer_config_store.default,
            logger=self.logger)

        num_guided_samples = 1000
        for i in range(num_guided_samples):
            suggested_params = bayesian_optimizer.suggest()
            target_value = objective_function.evaluate_point(suggested_params)
            self.logger.info(
                f"[{i}/{num_guided_samples}] suggested params: {suggested_params}, target: {target_value}"
            )

            bayesian_optimizer.register(suggested_params.to_dataframe(),
                                        target_value.to_dataframe())
            if i > 20 and i % 20 == 0:
                best_config_point, best_objective = bayesian_optimizer.optimum(
                )
                self.logger.info(
                    f"[{i}/{num_guided_samples}] Optimum config: {best_config_point}, optimum objective: {best_objective}"
                )

        self.validate_optima(bayesian_optimizer)
        best_config, optimum = bayesian_optimizer.optimum()
        assert objective_function.parameter_space.contains_point(best_config)
        assert objective_function.output_space.contains_point(optimum)
        _, all_targets = bayesian_optimizer.get_all_observations()
        assert optimum.y == all_targets.min()[0]
        self.logger.info(
            f"Optimum: {optimum} best configuration: {best_config}")
    def test_bayesian_optimizer_on_simple_2d_quadratic_function_pre_heated(
            self):
        """ Tests the bayesian optimizer on a simple quadratic function first feeding the optimizer a lot of data.

        """

        objective_function_config = objective_function_config_store.get_config_by_name(
            '2d_quadratic_concave_up')
        objective_function = ObjectiveFunctionFactory.create_objective_function(
            objective_function_config)
        random_params_df = objective_function.parameter_space.random_dataframe(
            num_samples=10000)

        y_df = objective_function.evaluate_dataframe(random_params_df)

        optimization_problem = OptimizationProblem(
            parameter_space=objective_function.parameter_space,
            objective_space=objective_function.output_space,
            objectives=[Objective(name='y', minimize=True)])

        bayesian_optimizer = BayesianOptimizer(
            optimization_problem=optimization_problem,
            optimizer_config=bayesian_optimizer_config_store.default,
            logger=self.logger)
        bayesian_optimizer.register(random_params_df, y_df)

        num_guided_samples = 20
        for i in range(num_guided_samples):
            # Suggest the parameters
            suggested_params = bayesian_optimizer.suggest()
            target_value = objective_function.evaluate_point(suggested_params)

            self.logger.info(
                f"[{i}/{num_guided_samples}] suggested params: {suggested_params}, target: {target_value}"
            )

            # Register the observation with the optimizer
            bayesian_optimizer.register(suggested_params.to_dataframe(),
                                        target_value.to_dataframe())

        self.validate_optima(bayesian_optimizer)
        best_config_point, best_objective = bayesian_optimizer.optimum()
        self.logger.info(
            f"Optimum: {best_objective} Best Configuration: {best_config_point}"
        )
        trace_output_path = os.path.join(self.temp_dir, "PreHeatedTrace.json")
        self.logger.info(f"Writing trace to {trace_output_path}")
        global_values.tracer.dump_trace_to_file(
            output_file_path=trace_output_path)
        global_values.tracer.clear_events()
    def test_hierarchical_quadratic_cold_start(self):

        objective_function_config = objective_function_config_store.get_config_by_name(
            'three_level_quadratic')
        objective_function = ObjectiveFunctionFactory.create_objective_function(
            objective_function_config=objective_function_config)

        output_space = SimpleHypergrid(name="output",
                                       dimensions=[
                                           ContinuousDimension(name='y',
                                                               min=-math.inf,
                                                               max=math.inf)
                                       ])

        optimization_problem = OptimizationProblem(
            parameter_space=objective_function.parameter_space,
            objective_space=output_space,
            objectives=[Objective(name='y', minimize=True)])

        num_restarts = 1000
        for restart_num in range(num_restarts):
            bayesian_optimizer = BayesianOptimizer(
                optimization_problem=optimization_problem,
                optimizer_config=bayesian_optimizer_config_store.default,
                logger=self.logger)

            num_guided_samples = 200
            for i in range(num_guided_samples):
                suggested_params = bayesian_optimizer.suggest()
                y = objective_function.evaluate_point(suggested_params)
                self.logger.info(
                    f"[{i}/{num_guided_samples}] {suggested_params}, y: {y}")

                input_values_df = suggested_params.to_dataframe()
                target_values_df = y.to_dataframe()
                bayesian_optimizer.register(input_values_df, target_values_df)
            self.validate_optima(bayesian_optimizer)
            best_config_point, best_objective = bayesian_optimizer.optimum()
            self.logger.info(
                f"[{restart_num}/{num_restarts}] Optimum config: {best_config_point}, optimum objective: {best_objective}"
            )
    def test_bayesian_optimizer_1d_nonconvex(self):
        # print seed for reproducible tests
        seed = np.random.randint(1e6)
        print(seed)
        random.seed(seed)
        np.random.seed(seed)
        sign = 1
        for minimize in [True, False]:
            # define function
            sign = 1 if minimize else -1

            def f(x):
                return (6 * x - 2)**2 * np.sin(12 * x - 4)

            # setup hypergrid
            # single continuous input dimension between 0 and 1
            input_space = SimpleHypergrid(
                name="input",
                dimensions=[ContinuousDimension(name="x", min=0, max=1)])
            # define output space, we might not know the exact ranges
            output_space = SimpleHypergrid(name="objective",
                                           dimensions=[
                                               ContinuousDimension(
                                                   name="function_value",
                                                   min=-10,
                                                   max=10)
                                           ])

            optimization_problem = OptimizationProblem(
                parameter_space=input_space,
                objective_space=output_space,
                # we want to minimize the function
                objectives=[
                    Objective(name="function_value", minimize=minimize)
                ])

            optimizer_config = bayesian_optimizer_config_store.default
            random_forest_config = optimizer_config.homogeneous_random_forest_regression_model_config

            random_forest_config.decision_tree_regression_model_config.n_new_samples_before_refit = 1

            random_forest_config.n_estimators = 20

            optimizer_config.experiment_designer_config.confidence_bound_utility_function_config.alpha = 0.1

            optimizer = BayesianOptimizer(optimization_problem,
                                          optimizer_config)

            def run_optimization(optimizer):
                # suggest new value from optimizer
                suggested_value = optimizer.suggest()
                input_values_df = suggested_value.to_dataframe()
                # suggested value are dictionary-like, keys are input space parameter names
                # evaluate target function
                target_value = sign * f(suggested_value['x'])

                # build dataframes to
                target_values_df = pd.DataFrame(
                    {'function_value': [target_value]})

                optimizer.register(input_values_df, target_values_df)

            for _ in range(40):
                run_optimization(optimizer)
            best_config_point, best_objective = optimizer.optimum()
            print(
                f"Optimum config: {best_config_point}, optimum objective: {best_objective}"
            )
            self.assertLessEqual(sign * best_objective['function_value'], -5.5)
    def test_hierarchical_quadratic_cold_start_random_configs(self):

        objective_function_config = objective_function_config_store.get_config_by_name(
            'three_level_quadratic')
        objective_function = ObjectiveFunctionFactory.create_objective_function(
            objective_function_config=objective_function_config)

        output_space = SimpleHypergrid(name="output",
                                       dimensions=[
                                           ContinuousDimension(name='y',
                                                               min=-math.inf,
                                                               max=math.inf)
                                       ])

        optimization_problem = OptimizationProblem(
            parameter_space=objective_function.parameter_space,
            objective_space=output_space,
            objectives=[Objective(name='y', minimize=True)])

        random_state = random.Random()
        num_restarts = 200
        for restart_num in range(num_restarts):

            # Let's set up random seeds so that we can easily repeat failed experiments
            #
            random_state.seed(restart_num)
            bayesian_optimizer_config_store.parameter_space.random_state = random_state
            objective_function.parameter_space.random_state = random_state

            optimizer_config = bayesian_optimizer_config_store.parameter_space.random(
            )

            # The goal here is to make sure the optimizer works with a lot of different configurations.
            # So let's make sure each run is not too long.
            #
            optimizer_config.min_samples_required_for_guided_design_of_experiments = 50
            if optimizer_config.surrogate_model_implementation == HomogeneousRandomForestRegressionModel.__name__:
                random_forest_config = optimizer_config.homogeneous_random_forest_regression_model_config
                random_forest_config.n_estimators = min(
                    random_forest_config.n_estimators, 5)
                decision_tree_config = random_forest_config.decision_tree_regression_model_config
                decision_tree_config.min_samples_to_fit = 10
                decision_tree_config.n_new_samples_before_refit = 10

            if optimizer_config.experiment_designer_config.numeric_optimizer_implementation == GlowWormSwarmOptimizer.__name__:
                optimizer_config.experiment_designer_config.glow_worm_swarm_optimizer_config.num_iterations = 5

            self.logger.info(
                f"[Restart: {restart_num}/{num_restarts}] Creating a BayesianOptimimizer with the following config: "
            )
            self.logger.info(
                f"Optimizer config: {optimizer_config.to_json(indent=2)}")
            bayesian_optimizer = BayesianOptimizer(
                optimization_problem=optimization_problem,
                optimizer_config=optimizer_config,
                logger=self.logger)

            num_guided_samples = optimizer_config.min_samples_required_for_guided_design_of_experiments + 50
            for i in range(num_guided_samples):
                suggested_params = bayesian_optimizer.suggest()
                y = objective_function.evaluate_point(suggested_params)
                self.logger.info(
                    f"[Restart: {restart_num}/{num_restarts}][Sample: {i}/{num_guided_samples}] {suggested_params}, y: {y}"
                )

                input_values_df = suggested_params.to_dataframe()
                target_values_df = y.to_dataframe()
                bayesian_optimizer.register(input_values_df, target_values_df)

            best_config_point, best_objective = bayesian_optimizer.optimum()
            self.logger.info(
                f"[Restart: {restart_num}/{num_restarts}] Optimum config: {best_config_point}, optimum objective: {best_objective}"
            )
예제 #6
0
    def test_bayesian_optimizer_on_simple_2d_quadratic_function_pre_heated(
            self):
        """ Tests the bayesian optimizer on a simple quadratic function first feeding the optimizer a lot of data.

        :return:
        """
        input_space = SimpleHypergrid(name="input",
                                      dimensions=[
                                          ContinuousDimension(name='x_1',
                                                              min=-100,
                                                              max=100),
                                          ContinuousDimension(name='x_2',
                                                              min=-100,
                                                              max=100)
                                      ])

        output_space = SimpleHypergrid(name="output",
                                       dimensions=[
                                           ContinuousDimension(name='y',
                                                               min=-math.inf,
                                                               max=math.inf)
                                       ])

        x_1, x_2 = np.meshgrid(input_space['x_1'].linspace(num=101),
                               input_space['x_2'].linspace(num=101))

        y = quadratic(x_1=x_1, x_2=x_2)

        input_values_dataframe = pd.DataFrame({
            'x_1': x_1.reshape(-1),
            'x_2': x_2.reshape(-1)
        })
        output_values_dataframe = pd.DataFrame({'y': y.reshape(-1)})

        optimization_problem = OptimizationProblem(
            parameter_space=input_space,
            objective_space=output_space,
            objectives=[Objective(name='y', minimize=True)])

        bayesian_optimizer = BayesianOptimizer(
            optimization_problem=optimization_problem,
            optimizer_config=BayesianOptimizerConfig.DEFAULT,
            logger=self.logger)
        bayesian_optimizer.register(input_values_dataframe,
                                    output_values_dataframe)

        num_guided_samples = 2
        for _ in range(num_guided_samples):
            # Suggest the parameters
            suggested_params = bayesian_optimizer.suggest()
            suggested_params_dict = suggested_params.to_dict()

            # Reformat them to feed the parameters to the target
            target_value = quadratic(**suggested_params_dict)
            print(suggested_params, target_value)

            # Reformat the observation to feed it back to the optimizer
            input_values_df = pd.DataFrame({
                param_name: [param_value]
                for param_name, param_value in suggested_params_dict.items()
            })
            target_values_df = pd.DataFrame({'y': [target_value]})

            # Register the observation with the optimizer
            bayesian_optimizer.register(input_values_df, target_values_df)

        print(bayesian_optimizer.optimum())