def test_mlp(): mlp.test_mlp(n_epochs=1)
x = T.scalar() y = T.scalar() z = x+y w = z*x a = T.sqrt(5) b = T.exp(a) c = a ** b d = T.log(c) num1 = input(); num2 = input(); v = T.dvector() f2 = function([x, y], x + y) hello_world_op = printing.Print('aaaa') printed_vetor = hello_world_op(v) f = function([v], printed_vetor) r = f([num1, num2]) m = f2(num1, num2) import mlp print ('testendo mlp') mlp.test_mlp() # treino 80 teste 20 print m
def test_mlp(): t0=time.time() mlp.test_mlp(n_epochs=5) print >> sys.stderr, "test_mlp took %.3fs expected 118s in our buildbot"%(time.time()-t0)
from scipy.io import loadmat as load import numpy as np import matplotlib.pyplot as plt import mlp from preprocess import Preprocess (x_train, y_train) = Preprocess( load('train_32x32.mat')).rgb2gray().standarize().scale().flatten().get() (x_test, y_test) = Preprocess( load('test_32x32.mat')).rgb2gray().standarize().scale().flatten().get() (x_valid, y_valid) = (x_train[math.floor(0.8 * len(x_train)):, :], y_train[math.floor(0.8 * len(y_train)):, :]) (x_train, y_train) = (x_train[:math.floor(0.8 * len(x_train)), :], y_train[:math.floor(0.8 * len(y_train)), :]) print(x_train.shape[0], 'train samples') print(x_valid.shape[0], 'validation samples') print(x_test.shape[0], 'test samples') (name, model) = mlp.create_mlp(1024, 0, ('relu', 512, 0)) mlp.train_mlp(model, 50, x_train, y_train, x_valid, y_valid) mlp.test_mlp(model, x_test, y_test) w = np.squeeze(model.layers[0].get_weights()) hw = w[0].T plot_weights(hw, 32)