def compute_gamma(self,A,E,zz_tn_prev,zz_tn,gamma_tn): """ Replaces the current value of the gamma parameters with its updated value, and returns the mean square difference between the two. """ # This is the main bottleneck of the code. # Would be faster if: # - implemented in C # - roots() was also implemented in C d_z = len(gamma_tn) product_matrix_matrix(zz_tn_prev,A.T,self.mat_d_z_d_z) product_matrix_matrix(A,self.mat_d_z_d_z,self.mat_d_z_d_z2) getdiag(self.mat_d_z_d_z2,self.AzzA_prev) G = diag(zz_tn)+2*self.gamma_prior_beta H = self.AzzA_prev a1 = 2.0*(self.gamma_prior_alpha+1.0) a2 = (4.0*self.gamma_prior_alpha+5.0)*E + H - G a3 = ((2.0*self.gamma_prior_alpha+3)*E-2.0*G)*E a4 = -G*E**2 Q = ((3.0*a3/a1)-((a2/a1)**2))/9 R = (9*a1*a2*a3-27*a4*(a1**2)-2*(a2**3))/(54*a1**3) ##delta = Q**3+R**2 #rho = sqrt(-Q**3) #theta = arccos(R/rho) theta = arccos(sign(R)*minimum(exp(log(abs(R))-3.0/2.0*log(-Q)),1.0)) #print theta1, theta #JJ = pow(rho,1.0/3) HH = sqrt(-Q) am = 2*HH*cos(theta/3)-a2/(3.0*a1) am = maximum(abs(am),0.00001) gamma_mean_diff = sum((am-gamma_tn)**2)/d_z gamma_tn[:] = am return gamma_mean_diff
def compute_gamma(self, A, E, zz_tn_prev, zz_tn, gamma_tn): """ Replaces the current value of the gamma parameters with its updated value, and returns the mean square difference between the two. """ # This is the main bottleneck of the code. # Would be faster if: # - implemented in C # - roots() was also implemented in C d_z = len(gamma_tn) product_matrix_matrix(zz_tn_prev, A.T, self.mat_d_z_d_z) product_matrix_matrix(A, self.mat_d_z_d_z, self.mat_d_z_d_z2) getdiag(self.mat_d_z_d_z2, self.AzzA_prev) G = diag(zz_tn) + 2 * self.gamma_prior_beta H = self.AzzA_prev a1 = 2.0 * (self.gamma_prior_alpha + 1.0) a2 = (4.0 * self.gamma_prior_alpha + 5.0) * E + H - G a3 = ((2.0 * self.gamma_prior_alpha + 3) * E - 2.0 * G) * E a4 = -G * E**2 Q = ((3.0 * a3 / a1) - ((a2 / a1)**2)) / 9 R = (9 * a1 * a2 * a3 - 27 * a4 * (a1**2) - 2 * (a2**3)) / (54 * a1**3) ##delta = Q**3+R**2 #rho = sqrt(-Q**3) #theta = arccos(R/rho) theta = arccos( sign(R) * minimum(exp(log(abs(R)) - 3.0 / 2.0 * log(-Q)), 1.0)) #print theta1, theta #JJ = pow(rho,1.0/3) HH = sqrt(-Q) am = 2 * HH * cos(theta / 3) - a2 / (3.0 * a1) am = maximum(abs(am), 0.00001) gamma_mean_diff = sum((am - gamma_tn)**2) / d_z gamma_tn[:] = am return gamma_mean_diff
def log_det_diff2_log_gamma(self,A,E,zz_tn_prev,zz_tn,gamma_tn): d_z = len(gamma_tn) product_matrix_matrix(zz_tn_prev,A.T,self.mat_d_z_d_z) product_matrix_matrix(A,self.mat_d_z_d_z,self.mat_d_z_d_z2) getdiag(self.mat_d_z_d_z2,self.AzzA_prev) G = 0.5*diag(zz_tn)+self.gamma_prior_beta H = 0.5*self.AzzA_prev gamma_E_1 = (gamma_tn+E) gamma_E_2 = gamma_E_1*gamma_E_1 gamma_E_3 = gamma_E_2*gamma_E_1 return sum(log(G/gamma_tn+H*gamma_tn*(E-gamma_tn)/gamma_E_3-0.5*E*gamma_tn/gamma_E_2))
def log_det_diff2_log_gamma(self, A, E, zz_tn_prev, zz_tn, gamma_tn): d_z = len(gamma_tn) product_matrix_matrix(zz_tn_prev, A.T, self.mat_d_z_d_z) product_matrix_matrix(A, self.mat_d_z_d_z, self.mat_d_z_d_z2) getdiag(self.mat_d_z_d_z2, self.AzzA_prev) G = 0.5 * diag(zz_tn) + self.gamma_prior_beta H = 0.5 * self.AzzA_prev gamma_E_1 = (gamma_tn + E) gamma_E_2 = gamma_E_1 * gamma_E_1 gamma_E_3 = gamma_E_2 * gamma_E_1 return sum( log(G / gamma_tn + H * gamma_tn * (E - gamma_tn) / gamma_E_3 - 0.5 * E * gamma_tn / gamma_E_2))
def cond_probs(self, y_set, gamma_set): """ Given the set of gamma variables, outputs the set of probabilities p(y_t | y_{t-1}, ... , y_1, gamma_{t-1}, ... , gamma_1) """ # Note (HUGO): this function should probably be implemented in C # to make it much faster, since it requires for loops. # Setting variables with friendlier name d_y = self.input_size d_z = self.latent_size A = self.A C = self.C Sigma = self.Sigma E = self.E cond_probs = [] map_probs = [] laplace_probs = [] y_pred = [] z_n_z_n_post_sum = zeros((d_z, d_z)) # Temporary variable, to avoid memory allocation vec_d_z = zeros(d_z) vec_d_z2 = zeros(d_z) vec_d_y = zeros(d_y) mat_d_z_d_z = zeros((d_z, d_z)) mat_d_z_d_z2 = zeros((d_z, d_z)) eye_d_z = eye(d_z) mat_times_C_trans = zeros((d_z, d_y)) pred = zeros(d_y) cov_pred = zeros((d_y, d_y)) A_gamma = zeros((d_z, d_z)) E_gamma = zeros((d_z, d_z)) K = zeros((d_z, d_y)) KC = zeros((d_z, d_z)) J = zeros((d_z, d_z)) A_times_prev_mu = zeros(d_z) Af_d_y_d_y = zeros((d_y, d_y), order='fortran') # Temporary variables Bf_d_y_d_z = zeros((d_y, d_z), order='fortran') # for calls to Af_d_z_d_z = zeros((d_z, d_z), order='fortran') # math.linalg.solve(...) Bf_d_z_d_z = zeros((d_z, d_z), order='fortran') pivots_d_y = zeros((d_y), dtype='i', order='fortran') pivots_d_z = zeros((d_z), dtype='i', order='fortran') z_n_z_n_post = zeros((d_z, d_z)) next_z_n_z_n_post = zeros((d_z, d_z)) log_det_diff2_log_gamma = 0 for y_t, gamma_t in zip(y_set, gamma_set): T = len(y_t) cond_probs_t = zeros(T) map_probs_t = zeros(T) laplace_probs_t = zeros(T) y_pred_t = zeros((T, d_y)) mu_kalman_t = zeros((T, d_z)) # Filtering mus E_kalman_t = zeros((T, d_z, d_z)) # Filtering Es mu_post_t = zeros((T, d_z)) E_post_t = zeros((T, d_z, d_z)) P_t = zeros((T - 1, d_z, d_z)) # Forward pass # Initialization at n = 0 A_times_prev_mu[:] = 0 multiply(C.T, reshape(gamma_t[0], (-1, 1)), mat_times_C_trans) pred[:] = 0 product_matrix_matrix(C, mat_times_C_trans, cov_pred) cov_pred += Sigma solve(cov_pred, mat_times_C_trans.T, K.T, Af_d_y_d_y, Bf_d_y_d_z, pivots_d_y) vec_d_y[:] = y_t[0] vec_d_y -= pred product_matrix_vector(K, vec_d_y, mu_kalman_t[0]) product_matrix_matrix(K, C, KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC multiply(mat_d_z_d_z, gamma_t[0], E_kalman_t[0]) cond_probs_t[0] = self.multivariate_norm_log_pdf( y_t[0], pred, cov_pred) y_pred_t[0] = pred # from n=1 to T-1 for n in xrange(T - 1): divide(1., E, vec_d_z) divide(1., gamma_t[n + 1], vec_d_z2) vec_d_z += vec_d_z2 divide(1., vec_d_z, vec_d_z2) setdiag(E_gamma, vec_d_z2) divide(E, gamma_t[n + 1], vec_d_z) vec_d_z += 1 divide(A, reshape(vec_d_z, (-1, 1)), A_gamma) P_tn = P_t[n] product_matrix_matrix(E_kalman_t[n], A_gamma.T, mat_d_z_d_z) product_matrix_matrix(A_gamma, mat_d_z_d_z, P_tn) P_tn += E_gamma product_matrix_vector(A_gamma, mu_kalman_t[n], A_times_prev_mu) product_matrix_matrix(P_tn, C.T, mat_times_C_trans) product_matrix_vector(C, A_times_prev_mu, pred) product_matrix_matrix(C, mat_times_C_trans, cov_pred) cov_pred += Sigma solve(cov_pred, mat_times_C_trans.T, K.T, Af_d_y_d_y, Bf_d_y_d_z, pivots_d_y) vec_d_y[:] = y_t[n + 1] vec_d_y -= pred product_matrix_vector(K, vec_d_y, mu_kalman_t[n + 1]) mu_kalman_t[n + 1] += A_times_prev_mu product_matrix_matrix(K, C, KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC product_matrix_matrix(mat_d_z_d_z, P_tn, mat_d_z_d_z2) # To ensure symmetry E_kalman_t[n + 1] = mat_d_z_d_z2 E_kalman_t[n + 1] += mat_d_z_d_z2.T E_kalman_t[n + 1] /= 2 mu_post_t[-1] = mu_kalman_t[-1] E_post_t[-1] = E_kalman_t[-1] # Compute last step statistics outer(mu_post_t[-1], mu_post_t[-1], z_n_z_n_post) z_n_z_n_post += E_post_t[-1] # Update cumulative statistics z_n_z_n_post_sum += z_n_z_n_post cond_probs_t[n + 1] = self.multivariate_norm_log_pdf( y_t[n + 1], pred, cov_pred) y_pred_t[n + 1] = pred #print y_t, y_pred_t # Backward pass pred[:] = 0 cov_pred[:] = 0 for n in xrange(T - 2, -1, -1): next_z_n_z_n_post[:] = z_n_z_n_post divide(E, gamma_t[n + 1], vec_d_z) vec_d_z += 1 divide(A, reshape(vec_d_z, (-1, 1)), A_gamma) P_tn = P_t[n] solve(P_tn.T, A_gamma, mat_d_z_d_z, Af_d_z_d_z, Bf_d_z_d_z, pivots_d_z) product_matrix_matrix(E_kalman_t[n], mat_d_z_d_z.T, J) product_matrix_vector(A_gamma, mu_kalman_t[n], vec_d_z) vec_d_z *= -1 vec_d_z += mu_post_t[n + 1] product_matrix_vector(J, vec_d_z, mu_post_t[n]) mu_post_t[n] += mu_kalman_t[n] mat_d_z_d_z[:] = E_post_t[n + 1] mat_d_z_d_z -= P_tn product_matrix_matrix(mat_d_z_d_z, J.T, mat_d_z_d_z2) product_matrix_matrix(J, mat_d_z_d_z2, mat_d_z_d_z) # To ensure symmetry E_post_t[n] = E_kalman_t[n] E_post_t[n] += mat_d_z_d_z E_post_t[n] += E_kalman_t[n].T E_post_t[n] += mat_d_z_d_z.T E_post_t[n] /= 2 outer(mu_post_t[n], mu_post_t[n], z_n_z_n_post) z_n_z_n_post += E_post_t[n] dummy = self.compute_gamma(A, E, z_n_z_n_post, next_z_n_z_n_post, gamma_t[n + 1]) log_prior_gamma = self.log_prior_gamma(gamma_t[n + 1]) #print log_prior_gamma log_prior_log_gamma = self.log_prior_log_gamma(gamma_t[n + 1]) log_det_diff2_log_gamma = self.log_det_diff2_log_gamma( A, E, z_n_z_n_post, next_z_n_z_n_post, gamma_t[n + 1]) map_probs_t[n + 1] = cond_probs_t[n + 1] + log_prior_gamma laplace_probs_t[ n + 1] = cond_probs_t[n + 1] + log_prior_log_gamma + d_z * log( 2 * pi) / 2 - 0.5 * log_det_diff2_log_gamma gamma_t[0] = (diag(z_n_z_n_post) + 2 * self.gamma_prior_beta) / ( 2 * self.gamma_prior_alpha + 3) log_prior_gamma = self.log_prior_gamma(gamma_t[0]) log_prior_log_gamma = self.log_prior_log_gamma(gamma_t[0]) log_det_diff2_log_gamma = sum( (z_n_z_n_post / 2 + self.gamma_prior_beta) / gamma_t[0]) map_probs_t[0] = cond_probs_t[0] + log_prior_gamma laplace_probs_t[ 0] = cond_probs_t[0] + log_prior_log_gamma + d_z * log( 2 * pi) / 2 - 0.5 * log_det_diff2_log_gamma cond_probs += [cond_probs_t] map_probs += [map_probs_t] laplace_probs += [laplace_probs_t] y_pred += [y_pred_t] return cond_probs, map_probs, laplace_probs, y_pred
def EM_step(self, y_set, gamma_set, training=False, return_mu_post=False): """ Computes the posterior statistics and outputs the M step estimates of the parameters. Also outputs the non-parametric, sparsity inducing variances gamma_t. Optionally, can output the posterior means of the latent state variables. """ # Setting variables with friendlier name d_y = self.input_size d_z = self.latent_size #V_zero = self.V_zero A = self.A C = self.C Sigma = self.Sigma E = self.E # Variables for estimating new parameters A_new = zeros((d_z, d_z)) C_new = zeros((d_y, d_z)) z_n_z_n_1_post_sum = zeros((d_z, d_z)) z_n_z_n_post_sum = zeros((d_z, d_z)) A_new_denums = zeros((d_z, d_z, d_z)) y_n_z_n_post_sum = zeros((d_y, d_z)) # Temporary variable, to avoid memory allocation vec_d_z = zeros(d_z) vec_d_z2 = zeros(d_z) vec_d_y = zeros(d_y) mat_d_z_d_z = zeros((d_z, d_z)) mat_d_z_d_z2 = zeros((d_z, d_z)) eye_d_z = eye(d_z) mat_times_C_trans = zeros((d_z, d_y)) pred = zeros(d_y) cov_pred = zeros((d_y, d_y)) A_gamma = zeros((d_z, d_z)) E_gamma = zeros((d_z, d_z)) K = zeros((d_z, d_y)) KC = zeros((d_z, d_z)) J = zeros((d_z, d_z)) A_times_prev_mu = zeros(d_z) Af_d_y_d_y = zeros((d_y, d_y), order='fortran') # Temporary variables Bf_d_y_d_z = zeros((d_y, d_z), order='fortran') # for calls to Af_d_z_d_z = zeros((d_z, d_z), order='fortran') # math.linalg.solve(...) Bf_d_z_d_z = zeros((d_z, d_z), order='fortran') pivots_d_y = zeros((d_y), dtype='i', order='fortran') pivots_d_z = zeros((d_z), dtype='i', order='fortran') z_n_z_n_1_post = zeros((d_z, d_z)) z_n_z_n_post = zeros((d_z, d_z)) weighted_z_n_z_n_post = zeros((d_z, d_z, d_z)) next_z_n_z_n_post = zeros((d_z, d_z)) y_n_z_n_post = zeros((d_y, d_z)) if training == True: max_Esteps = self.max_Esteps last_Esteps = self.last_Esteps else: max_Esteps = self.max_test_Esteps last_Esteps = self.max_test_Esteps Esteps = 0 have_A_denum = False get_A_denum = False finished = False while not finished: T_sum = 0 gamma_mean_diff = 0 z_n_z_n_1_post_sum[:] = 0 z_n_z_n_post_sum[:] = 0 y_n_z_n_post_sum[:] = 0 A_new_denums[:] = 0 Esteps += 1 if Esteps == max_Esteps: get_A_denum = True finished = True elif Esteps >= last_Esteps: get_A_denum = True if return_mu_post: mu_post = [] for y_t, gamma_t in zip(y_set, gamma_set): T = len(y_t) T_sum += T mu_kalman_t = zeros((T, d_z)) # Filtering mus E_kalman_t = zeros((T, d_z, d_z)) # Filtering Es mu_post_t = zeros((T, d_z)) E_post_t = zeros((T, d_z, d_z)) P_t = zeros((T - 1, d_z, d_z)) # Forward pass # Initialization at n = 0 A_times_prev_mu[:] = 0 multiply(C.T, reshape(gamma_t[0], (-1, 1)), mat_times_C_trans) pred[:] = 0 product_matrix_matrix(C, mat_times_C_trans, cov_pred) cov_pred += Sigma solve(cov_pred, mat_times_C_trans.T, K.T, Af_d_y_d_y, Bf_d_y_d_z, pivots_d_y) vec_d_y[:] = y_t[0] vec_d_y -= pred product_matrix_vector(K, vec_d_y, mu_kalman_t[0]) product_matrix_matrix(K, C, KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC multiply(mat_d_z_d_z, gamma_t[0], E_kalman_t[0]) # from n=1 to T-1 for n in xrange(T - 1): divide(1., E, vec_d_z) divide(1., gamma_t[n + 1], vec_d_z2) vec_d_z += vec_d_z2 divide(1., vec_d_z, vec_d_z2) setdiag(E_gamma, vec_d_z2) divide(E, gamma_t[n + 1], vec_d_z) vec_d_z += 1 divide(A, reshape(vec_d_z, (-1, 1)), A_gamma) P_tn = P_t[n] product_matrix_matrix(E_kalman_t[n], A_gamma.T, mat_d_z_d_z) product_matrix_matrix(A_gamma, mat_d_z_d_z, P_tn) P_tn += E_gamma product_matrix_vector(A_gamma, mu_kalman_t[n], A_times_prev_mu) product_matrix_matrix(P_tn, C.T, mat_times_C_trans) product_matrix_vector(C, A_times_prev_mu, pred) product_matrix_matrix(C, mat_times_C_trans, cov_pred) cov_pred += Sigma solve(cov_pred, mat_times_C_trans.T, K.T, Af_d_y_d_y, Bf_d_y_d_z, pivots_d_y) vec_d_y[:] = y_t[n + 1] vec_d_y -= pred product_matrix_vector(K, vec_d_y, mu_kalman_t[n + 1]) mu_kalman_t[n + 1] += A_times_prev_mu product_matrix_matrix(K, C, KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC product_matrix_matrix(mat_d_z_d_z, P_tn, mat_d_z_d_z2) # To ensure symmetry E_kalman_t[n + 1] = mat_d_z_d_z2 E_kalman_t[n + 1] += mat_d_z_d_z2.T E_kalman_t[n + 1] /= 2 mu_post_t[-1] = mu_kalman_t[-1] E_post_t[-1] = E_kalman_t[-1] # Compute last step statistics outer(mu_post_t[-1], mu_post_t[-1], z_n_z_n_post) z_n_z_n_post += E_post_t[-1] outer(y_t[-1], mu_post_t[-1], y_n_z_n_post) # Update cumulative statistics z_n_z_n_post_sum += z_n_z_n_post y_n_z_n_post_sum += y_n_z_n_post # Backward pass pred[:] = 0 cov_pred[:] = 0 for n in xrange(T - 2, -1, -1): next_z_n_z_n_post[:] = z_n_z_n_post divide(E, gamma_t[n + 1], vec_d_z) vec_d_z += 1 divide(A, reshape(vec_d_z, (-1, 1)), A_gamma) P_tn = P_t[n] solve(P_tn.T, A_gamma, mat_d_z_d_z, Af_d_z_d_z, Bf_d_z_d_z, pivots_d_z) product_matrix_matrix(E_kalman_t[n], mat_d_z_d_z.T, J) product_matrix_vector(A_gamma, mu_kalman_t[n], vec_d_z) vec_d_z *= -1 vec_d_z += mu_post_t[n + 1] product_matrix_vector(J, vec_d_z, mu_post_t[n]) mu_post_t[n] += mu_kalman_t[n] mat_d_z_d_z[:] = E_post_t[n + 1] mat_d_z_d_z -= P_tn product_matrix_matrix(mat_d_z_d_z, J.T, mat_d_z_d_z2) product_matrix_matrix(J, mat_d_z_d_z2, mat_d_z_d_z) # To ensure symmetry E_post_t[n] = E_kalman_t[n] E_post_t[n] += mat_d_z_d_z E_post_t[n] += E_kalman_t[n].T E_post_t[n] += mat_d_z_d_z.T E_post_t[n] /= 2 # Compute posterior statistics product_matrix_matrix(J, E_post_t[n + 1], z_n_z_n_1_post) outer(mu_post_t[n + 1], mu_post_t[n], mat_d_z_d_z) z_n_z_n_1_post += mat_d_z_d_z outer(mu_post_t[n], mu_post_t[n], z_n_z_n_post) z_n_z_n_post += E_post_t[n] outer(y_t[n], mu_post_t[n], y_n_z_n_post) # Update cumulative statistics z_n_z_n_1_post_sum += z_n_z_n_1_post z_n_z_n_post_sum += z_n_z_n_post y_n_z_n_post_sum += y_n_z_n_post gamma_mean_diff += self.compute_gamma( A, E, z_n_z_n_post, next_z_n_z_n_post, gamma_t[n + 1]) #print gamma_t[n+1] if get_A_denum == True: # Compute the denominator of the A update, # which requires d_z matrices of size (d_z,d_z) # (i.e. d_z different weighted sums of the z_n_z_n_post matrices) add(gamma_t[n + 1], E, vec_d_z) divide(gamma_t[n + 1], vec_d_z, vec_d_z2) multiply(reshape(z_n_z_n_post, (1, d_z, d_z)), reshape(vec_d_z2, (d_z, 1, 1)), weighted_z_n_z_n_post) A_new_denums += weighted_z_n_z_n_post have_A_denum = True new_gamma = (diag(z_n_z_n_post) + 2 * self.gamma_prior_beta ) / (2 * self.gamma_prior_alpha + 3) gamma_mean_diff += sum((gamma_t[0] - new_gamma)**2) / d_z gamma_t[0] = new_gamma gamma_mean_diff /= T_sum if gamma_mean_diff < self.gamma_change_tolerance: if training == True: if have_A_denum == True: finished = True self.last_Esteps = Esteps else: get_A_denum = True else: finished = True elif gamma_mean_diff <= 10 * self.gamma_change_tolerance and training == True: get_A_denum = True if self.verbose: print gamma_mean_diff, max_Esteps, Esteps if return_mu_post: mu_post += [mu_post_t] # Compute the M step estimates of the parameters if training == True: for i in xrange(d_z): solve( A_new_denums[i] + eye(d_z) * self.latent_transition_matrix_regularizer, z_n_z_n_1_post_sum[i:(i + 1)].T, A_new[i:(i + 1)].T) solve( z_n_z_n_post_sum + eye_d_z * self.emission_matrix_regularizer, y_n_z_n_post_sum.T, C_new.T) if return_mu_post: return (A_new, C_new), gamma_set, mu_post else: return (A_new, C_new), gamma_set
def EM_step(self, y_set, return_mu_post=False): """ Computes the posterior statistics and outputs the M step estimates of the parameters. The set of probabilities p(y_t | y_{t-1}, ... , y_1) are also given. """ # Setting variables with friendlier name d_y = self.input_size d_z = self.latent_size mu_zero = self.mu_zero V_zero = self.V_zero A = self.A C = self.C Sigma = self.Sigma E = self.E # Variables for estimating new parameters A_new = zeros((d_z, d_z)) C_new = zeros((d_y, d_z)) E_new = zeros((d_z, d_z)) Sigma_new = zeros((d_y, d_y)) mu_zero_new = zeros((d_z)) V_zero_new = zeros((d_z, d_z)) z_n_z_n_1_post_sum = zeros((d_z, d_z)) z_n_z_n_post_sum = zeros((d_z, d_z)) z_n_z_n_post_sum_no_last = zeros((d_z, d_z)) z_n_z_n_post_sum_no_first = zeros((d_z, d_z)) z_n_z_n_post_sum_first = zeros((d_z, d_z)) outer_z_n_z_n_post_sum_first = zeros((d_z, d_z)) z_n_post_sum_first = zeros((d_z)) y_n_z_n_post_sum = zeros((d_y, d_z)) y_n_y_n_sum = zeros((d_y, d_y)) cond_probs = [] # Temporary variable, to avoid memory allocation vec_d_z = zeros(d_z) vec_d_y = zeros(d_y) mat_d_z_d_z = zeros((d_z, d_z)) mat_d_z_d_z2 = zeros((d_z, d_z)) eye_d_z = eye(d_z) mat_times_C_trans = zeros((d_z, d_y)) pred = zeros(d_y) cov_pred = zeros((d_y, d_y)) K = zeros((d_z, d_y)) KC = zeros((d_z, d_z)) J = zeros((d_z, d_z)) A_times_prev_mu = zeros(d_z) Af_d_y_d_y = zeros((d_y, d_y), order='fortran') # Temporary variables Bf_d_y_d_z = zeros((d_y, d_z), order='fortran') # for calls to Af_d_z_d_z = zeros((d_z, d_z), order='fortran') # math.linalg.solve(...) Bf_d_z_d_z = zeros((d_z, d_z), order='fortran') pivots_d_y = zeros((d_y), dtype='i', order='fortran') pivots_d_z = zeros((d_z), dtype='i', order='fortran') z_n_z_n_1_post = zeros((d_z, d_z)) z_n_z_n_post = zeros((d_z, d_z)) y_n_z_n_post = zeros((d_y, d_z)) y_n_y_n = zeros((d_y, d_y)) T_sum = 0 if return_mu_post: mu_post = [] for y_t in y_set: T = len(y_t) T_sum += T mu_kalman_t = zeros((T, d_z)) # Filtering mus E_kalman_t = zeros((T, d_z, d_z)) # Filtering Es mu_post_t = zeros( (T, d_z)) # Posterior mus (could be removed and computed once) E_post_t = zeros( (T, d_z, d_z)) # Posterior Es (could be removed and computed once) P_t = zeros((T - 1, d_z, d_z)) cond_probs_t = zeros(T) # Forward pass # Initialization at n = 0 A_times_prev_mu[:] = 0 product_matrix_matrix(V_zero, C.T, mat_times_C_trans) product_matrix_vector(C, mu_zero, pred) product_matrix_matrix(C, mat_times_C_trans, cov_pred) cov_pred += Sigma solve(cov_pred, mat_times_C_trans.T, K.T, Af_d_y_d_y, Bf_d_y_d_z, pivots_d_y) vec_d_y[:] = y_t[0] vec_d_y -= pred product_matrix_vector(K, vec_d_y, mu_kalman_t[0]) mu_kalman_t[0] += mu_zero product_matrix_matrix(K, C, KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC product_matrix_matrix(mat_d_z_d_z, V_zero, E_kalman_t[0]) cond_probs_t[0] = self.multivariate_norm_log_pdf( y_t[0], pred, cov_pred) # from n=1 to T-1 for n in xrange(T - 1): P_tn = P_t[n] product_matrix_matrix(E_kalman_t[n], A.T, mat_d_z_d_z) product_matrix_matrix(A, mat_d_z_d_z, P_tn) P_tn += E product_matrix_vector(A, mu_kalman_t[n], A_times_prev_mu) product_matrix_matrix(P_tn, C.T, mat_times_C_trans) product_matrix_vector(C, A_times_prev_mu, pred) product_matrix_matrix(C, mat_times_C_trans, cov_pred) cov_pred += Sigma solve(cov_pred, mat_times_C_trans.T, K.T, Af_d_y_d_y, Bf_d_y_d_z, pivots_d_y) vec_d_y[:] = y_t[n + 1] vec_d_y -= pred product_matrix_vector(K, vec_d_y, mu_kalman_t[n + 1]) mu_kalman_t[n + 1] += A_times_prev_mu product_matrix_matrix(K, C, KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC product_matrix_matrix(mat_d_z_d_z, P_tn, mat_d_z_d_z2) # To ensure symmetry E_kalman_t[n + 1] = mat_d_z_d_z2 E_kalman_t[n + 1] += mat_d_z_d_z2.T E_kalman_t[n + 1] /= 2 cond_probs_t[n + 1] = self.multivariate_norm_log_pdf( y_t[n + 1], pred, cov_pred) mu_post_t[-1] = mu_kalman_t[-1] E_post_t[-1] = E_kalman_t[-1] # Compute last step statistics outer(mu_post_t[-1], mu_post_t[-1], z_n_z_n_post) z_n_z_n_post += E_post_t[-1] outer(y_t[-1], mu_post_t[-1], y_n_z_n_post) outer(y_t[-1], y_t[-1], y_n_y_n) # Update cumulative statistics z_n_z_n_post_sum += z_n_z_n_post z_n_z_n_post_sum_no_first += z_n_z_n_post y_n_z_n_post_sum += y_n_z_n_post y_n_y_n_sum += y_n_y_n # Backward pass pred[:] = 0 cov_pred[:] = 0 for n in xrange(T - 2, -1, -1): P_tn = P_t[n] solve(P_tn.T, A, mat_d_z_d_z, Af_d_z_d_z, Bf_d_z_d_z, pivots_d_z) product_matrix_matrix(E_kalman_t[n], mat_d_z_d_z.T, J) product_matrix_vector(A, mu_kalman_t[n], vec_d_z) vec_d_z *= -1 vec_d_z += mu_post_t[n + 1] product_matrix_vector(J, vec_d_z, mu_post_t[n]) mu_post_t[n] += mu_kalman_t[n] mat_d_z_d_z[:] = E_post_t[n + 1] mat_d_z_d_z -= P_tn product_matrix_matrix(mat_d_z_d_z, J.T, mat_d_z_d_z2) product_matrix_matrix(J, mat_d_z_d_z2, mat_d_z_d_z) # To ensure symmetry E_post_t[n] = E_kalman_t[n] E_post_t[n] += mat_d_z_d_z E_post_t[n] += E_kalman_t[n].T E_post_t[n] += mat_d_z_d_z.T E_post_t[n] /= 2 # Compute posterior statistics product_matrix_matrix(J, E_post_t[n + 1], z_n_z_n_1_post) outer(mu_post_t[n + 1], mu_post_t[n], mat_d_z_d_z) z_n_z_n_1_post += mat_d_z_d_z outer(mu_post_t[n], mu_post_t[n], z_n_z_n_post) z_n_z_n_post += E_post_t[n] outer(y_t[n], mu_post_t[n], y_n_z_n_post) outer(y_t[n], y_t[n], y_n_y_n) # Update cumulative statistics z_n_z_n_1_post_sum += z_n_z_n_1_post z_n_z_n_post_sum += z_n_z_n_post if n > 0: z_n_z_n_post_sum_no_first += z_n_z_n_post else: z_n_z_n_post_sum_first += z_n_z_n_post z_n_post_sum_first += mu_post_t[n] outer(mu_post_t[n], mu_post_t[n], mat_d_z_d_z) outer_z_n_z_n_post_sum_first += mat_d_z_d_z z_n_z_n_post_sum_no_last += z_n_z_n_post y_n_z_n_post_sum += y_n_z_n_post y_n_y_n_sum += y_n_y_n cond_probs += [cond_probs_t] if return_mu_post: mu_post += [mu_post_t] # Compute the M step estimates of the parameters #A_new = dot(z_n_z_n_1_post_sum,inv(z_n_z_n_post_sum_no_last+ # eye_d_z*self.latent_transition_matrix_regularizer)) solve( z_n_z_n_post_sum_no_last + eye_d_z * self.latent_transition_matrix_regularizer, z_n_z_n_1_post_sum.T, A_new.T) #C_new = dot(y_n_z_n_post_sum, inv(z_n_z_n_post_sum+ # eye_d_z*self.input_transition_matrix_regularizer)) solve( z_n_z_n_post_sum + eye_d_z * self.input_transition_matrix_regularizer, y_n_z_n_post_sum.T, C_new.T) E_new[:] = z_n_z_n_post_sum_no_first z_n_z_n_1_A_T = dot(z_n_z_n_1_post_sum, A_new.T) E_new -= z_n_z_n_1_A_T.T E_new -= z_n_z_n_1_A_T # There is an error in Bishop's equation: the transpose on A is missing E_new += dot(A_new, dot(z_n_z_n_post_sum_no_last, A_new.T)) E_new += eye_d_z * self.latent_covariance_matrix_regularizer E_new /= T_sum - len(y_set) Sigma_new[:] = y_n_y_n_sum C_z_n_y_n = dot(C_new, y_n_z_n_post_sum.T) Sigma_new -= C_z_n_y_n Sigma_new -= C_z_n_y_n.T # There is an error in Bishop's equation: the transpose on C is missing Sigma_new += dot(C_new, dot(z_n_z_n_post_sum, C_new.T)) # ... idem Sigma_new += eye(d_y) * self.input_covariance_matrix_regularizer Sigma_new /= T_sum mu_zero_new[:] = z_n_post_sum_first mu_zero_new /= len(y_set) V_zero_new[:] = z_n_z_n_post_sum_first V_zero_new -= outer_z_n_z_n_post_sum_first V_zero_new /= len(y_set) if return_mu_post: return (A_new, C_new, E_new, Sigma_new, mu_zero_new, V_zero_new), cond_probs, mu_post else: return (A_new, C_new, E_new, Sigma_new, mu_zero_new, V_zero_new), cond_probs
def cond_probs(self,y_set,gamma_set): """ Given the set of gamma variables, outputs the set of probabilities p(y_t | y_{t-1}, ... , y_1, gamma_{t-1}, ... , gamma_1) """ # Note (HUGO): this function should probably be implemented in C # to make it much faster, since it requires for loops. # Setting variables with friendlier name d_y = self.input_size d_z = self.latent_size A = self.A C = self.C Sigma = self.Sigma E = self.E cond_probs = [] map_probs = [] laplace_probs = [] y_pred = [] z_n_z_n_post_sum = zeros((d_z,d_z)) # Temporary variable, to avoid memory allocation vec_d_z = zeros(d_z) vec_d_z2 = zeros(d_z) vec_d_y = zeros(d_y) mat_d_z_d_z = zeros((d_z,d_z)) mat_d_z_d_z2 = zeros((d_z,d_z)) eye_d_z = eye(d_z) mat_times_C_trans = zeros((d_z,d_y)) pred = zeros(d_y) cov_pred = zeros((d_y,d_y)) A_gamma = zeros((d_z,d_z)) E_gamma = zeros((d_z,d_z)) K = zeros((d_z,d_y)) KC = zeros((d_z,d_z)) J = zeros((d_z,d_z)) A_times_prev_mu = zeros(d_z) Af_d_y_d_y = zeros((d_y,d_y),order='fortran') # Temporary variables Bf_d_y_d_z = zeros((d_y,d_z),order='fortran') # for calls to Af_d_z_d_z = zeros((d_z,d_z),order='fortran') # math.linalg.solve(...) Bf_d_z_d_z = zeros((d_z,d_z),order='fortran') pivots_d_y = zeros((d_y),dtype='i',order='fortran') pivots_d_z = zeros((d_z),dtype='i',order='fortran') z_n_z_n_post = zeros((d_z,d_z)) next_z_n_z_n_post = zeros((d_z,d_z)) log_det_diff2_log_gamma = 0 for y_t,gamma_t in zip(y_set,gamma_set): T = len(y_t) cond_probs_t = zeros(T) map_probs_t = zeros(T) laplace_probs_t = zeros(T) y_pred_t = zeros((T,d_y)) mu_kalman_t = zeros((T,d_z)) # Filtering mus E_kalman_t = zeros((T,d_z,d_z)) # Filtering Es mu_post_t = zeros((T,d_z)) E_post_t = zeros((T,d_z,d_z)) P_t = zeros((T-1,d_z,d_z)) # Forward pass # Initialization at n = 0 A_times_prev_mu[:] = 0 multiply(C.T,reshape(gamma_t[0],(-1,1)),mat_times_C_trans) pred[:] = 0 product_matrix_matrix(C,mat_times_C_trans,cov_pred) cov_pred += Sigma solve(cov_pred,mat_times_C_trans.T,K.T,Af_d_y_d_y,Bf_d_y_d_z,pivots_d_y) vec_d_y[:] = y_t[0] vec_d_y -= pred product_matrix_vector(K,vec_d_y,mu_kalman_t[0]) product_matrix_matrix(K,C,KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC multiply(mat_d_z_d_z,gamma_t[0],E_kalman_t[0]) cond_probs_t[0] = self.multivariate_norm_log_pdf(y_t[0],pred,cov_pred) y_pred_t[0] = pred # from n=1 to T-1 for n in xrange(T-1): divide(1.,E,vec_d_z) divide(1.,gamma_t[n+1],vec_d_z2) vec_d_z += vec_d_z2 divide(1.,vec_d_z,vec_d_z2) setdiag(E_gamma,vec_d_z2) divide(E,gamma_t[n+1],vec_d_z) vec_d_z += 1 divide(A,reshape(vec_d_z,(-1,1)),A_gamma) P_tn = P_t[n] product_matrix_matrix(E_kalman_t[n],A_gamma.T,mat_d_z_d_z) product_matrix_matrix(A_gamma,mat_d_z_d_z,P_tn) P_tn += E_gamma product_matrix_vector(A_gamma,mu_kalman_t[n],A_times_prev_mu) product_matrix_matrix(P_tn,C.T,mat_times_C_trans) product_matrix_vector(C,A_times_prev_mu,pred) product_matrix_matrix(C,mat_times_C_trans,cov_pred) cov_pred += Sigma solve(cov_pred,mat_times_C_trans.T,K.T,Af_d_y_d_y,Bf_d_y_d_z,pivots_d_y) vec_d_y[:] = y_t[n+1] vec_d_y -= pred product_matrix_vector(K,vec_d_y,mu_kalman_t[n+1]) mu_kalman_t[n+1] += A_times_prev_mu product_matrix_matrix(K,C,KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC product_matrix_matrix(mat_d_z_d_z,P_tn,mat_d_z_d_z2) # To ensure symmetry E_kalman_t[n+1] = mat_d_z_d_z2 E_kalman_t[n+1] += mat_d_z_d_z2.T E_kalman_t[n+1] /= 2 mu_post_t[-1] = mu_kalman_t[-1] E_post_t[-1] = E_kalman_t[-1] # Compute last step statistics outer(mu_post_t[-1],mu_post_t[-1],z_n_z_n_post) z_n_z_n_post += E_post_t[-1] # Update cumulative statistics z_n_z_n_post_sum += z_n_z_n_post cond_probs_t[n+1] = self.multivariate_norm_log_pdf(y_t[n+1],pred,cov_pred) y_pred_t[n+1] = pred #print y_t, y_pred_t # Backward pass pred[:] = 0 cov_pred[:] = 0 for n in xrange(T-2,-1,-1): next_z_n_z_n_post[:] = z_n_z_n_post divide(E,gamma_t[n+1],vec_d_z) vec_d_z += 1 divide(A,reshape(vec_d_z,(-1,1)),A_gamma) P_tn = P_t[n] solve(P_tn.T,A_gamma,mat_d_z_d_z,Af_d_z_d_z,Bf_d_z_d_z,pivots_d_z) product_matrix_matrix(E_kalman_t[n],mat_d_z_d_z.T,J) product_matrix_vector(A_gamma,mu_kalman_t[n],vec_d_z) vec_d_z *= -1 vec_d_z += mu_post_t[n+1] product_matrix_vector(J,vec_d_z,mu_post_t[n]) mu_post_t[n] += mu_kalman_t[n] mat_d_z_d_z[:] = E_post_t[n+1] mat_d_z_d_z -= P_tn product_matrix_matrix(mat_d_z_d_z,J.T,mat_d_z_d_z2) product_matrix_matrix(J,mat_d_z_d_z2,mat_d_z_d_z) # To ensure symmetry E_post_t[n] = E_kalman_t[n] E_post_t[n] += mat_d_z_d_z E_post_t[n] += E_kalman_t[n].T E_post_t[n] += mat_d_z_d_z.T E_post_t[n] /= 2 outer(mu_post_t[n],mu_post_t[n],z_n_z_n_post) z_n_z_n_post += E_post_t[n] dummy = self.compute_gamma(A,E,z_n_z_n_post,next_z_n_z_n_post,gamma_t[n+1]) log_prior_gamma = self.log_prior_gamma(gamma_t[n+1]) #print log_prior_gamma log_prior_log_gamma = self.log_prior_log_gamma(gamma_t[n+1]) log_det_diff2_log_gamma = self.log_det_diff2_log_gamma(A,E,z_n_z_n_post,next_z_n_z_n_post,gamma_t[n+1]) map_probs_t[n+1] = cond_probs_t[n+1]+log_prior_gamma laplace_probs_t[n+1] = cond_probs_t[n+1]+log_prior_log_gamma+d_z*log(2*pi)/2-0.5*log_det_diff2_log_gamma gamma_t[0] = (diag(z_n_z_n_post)+2*self.gamma_prior_beta)/(2*self.gamma_prior_alpha+3) log_prior_gamma = self.log_prior_gamma(gamma_t[0]) log_prior_log_gamma = self.log_prior_log_gamma(gamma_t[0]) log_det_diff2_log_gamma = sum((z_n_z_n_post/2+self.gamma_prior_beta)/gamma_t[0]) map_probs_t[0] = cond_probs_t[0]+log_prior_gamma laplace_probs_t[0] = cond_probs_t[0]+log_prior_log_gamma+d_z*log(2*pi)/2-0.5*log_det_diff2_log_gamma cond_probs += [cond_probs_t] map_probs += [map_probs_t] laplace_probs += [laplace_probs_t] y_pred += [y_pred_t] return cond_probs, map_probs, laplace_probs, y_pred
def EM_step(self,y_set,gamma_set,training = False, return_mu_post = False): """ Computes the posterior statistics and outputs the M step estimates of the parameters. Also outputs the non-parametric, sparsity inducing variances gamma_t. Optionally, can output the posterior means of the latent state variables. """ # Setting variables with friendlier name d_y = self.input_size d_z = self.latent_size #V_zero = self.V_zero A = self.A C = self.C Sigma = self.Sigma E = self.E # Variables for estimating new parameters A_new = zeros((d_z,d_z)) C_new = zeros((d_y,d_z)) z_n_z_n_1_post_sum = zeros((d_z,d_z)) z_n_z_n_post_sum = zeros((d_z,d_z)) A_new_denums = zeros((d_z,d_z,d_z)) y_n_z_n_post_sum = zeros((d_y,d_z)) # Temporary variable, to avoid memory allocation vec_d_z = zeros(d_z) vec_d_z2 = zeros(d_z) vec_d_y = zeros(d_y) mat_d_z_d_z = zeros((d_z,d_z)) mat_d_z_d_z2 = zeros((d_z,d_z)) eye_d_z = eye(d_z) mat_times_C_trans = zeros((d_z,d_y)) pred = zeros(d_y) cov_pred = zeros((d_y,d_y)) A_gamma = zeros((d_z,d_z)) E_gamma = zeros((d_z,d_z)) K = zeros((d_z,d_y)) KC = zeros((d_z,d_z)) J = zeros((d_z,d_z)) A_times_prev_mu = zeros(d_z) Af_d_y_d_y = zeros((d_y,d_y),order='fortran') # Temporary variables Bf_d_y_d_z = zeros((d_y,d_z),order='fortran') # for calls to Af_d_z_d_z = zeros((d_z,d_z),order='fortran') # math.linalg.solve(...) Bf_d_z_d_z = zeros((d_z,d_z),order='fortran') pivots_d_y = zeros((d_y),dtype='i',order='fortran') pivots_d_z = zeros((d_z),dtype='i',order='fortran') z_n_z_n_1_post = zeros((d_z,d_z)) z_n_z_n_post = zeros((d_z,d_z)) weighted_z_n_z_n_post = zeros((d_z,d_z,d_z)) next_z_n_z_n_post = zeros((d_z,d_z)) y_n_z_n_post = zeros((d_y,d_z)) if training == True: max_Esteps = self.max_Esteps last_Esteps = self.last_Esteps else: max_Esteps = self.max_test_Esteps last_Esteps = self.max_test_Esteps Esteps = 0 have_A_denum = False get_A_denum = False finished = False while not finished: T_sum = 0 gamma_mean_diff = 0 z_n_z_n_1_post_sum[:] = 0 z_n_z_n_post_sum[:] = 0 y_n_z_n_post_sum[:] = 0 A_new_denums[:] = 0 Esteps += 1 if Esteps == max_Esteps: get_A_denum = True finished = True elif Esteps >= last_Esteps: get_A_denum = True if return_mu_post: mu_post = [] for y_t,gamma_t in zip(y_set,gamma_set): T = len(y_t) T_sum += T mu_kalman_t = zeros((T,d_z)) # Filtering mus E_kalman_t = zeros((T,d_z,d_z)) # Filtering Es mu_post_t = zeros((T,d_z)) E_post_t = zeros((T,d_z,d_z)) P_t = zeros((T-1,d_z,d_z)) # Forward pass # Initialization at n = 0 A_times_prev_mu[:] = 0 multiply(C.T,reshape(gamma_t[0],(-1,1)),mat_times_C_trans) pred[:] = 0 product_matrix_matrix(C,mat_times_C_trans,cov_pred) cov_pred += Sigma solve(cov_pred,mat_times_C_trans.T,K.T,Af_d_y_d_y,Bf_d_y_d_z,pivots_d_y) vec_d_y[:] = y_t[0] vec_d_y -= pred product_matrix_vector(K,vec_d_y,mu_kalman_t[0]) product_matrix_matrix(K,C,KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC multiply(mat_d_z_d_z,gamma_t[0],E_kalman_t[0]) # from n=1 to T-1 for n in xrange(T-1): divide(1.,E,vec_d_z) divide(1.,gamma_t[n+1],vec_d_z2) vec_d_z += vec_d_z2 divide(1.,vec_d_z,vec_d_z2) setdiag(E_gamma,vec_d_z2) divide(E,gamma_t[n+1],vec_d_z) vec_d_z += 1 divide(A,reshape(vec_d_z,(-1,1)),A_gamma) P_tn = P_t[n] product_matrix_matrix(E_kalman_t[n],A_gamma.T,mat_d_z_d_z) product_matrix_matrix(A_gamma,mat_d_z_d_z,P_tn) P_tn += E_gamma product_matrix_vector(A_gamma,mu_kalman_t[n],A_times_prev_mu) product_matrix_matrix(P_tn,C.T,mat_times_C_trans) product_matrix_vector(C,A_times_prev_mu,pred) product_matrix_matrix(C,mat_times_C_trans,cov_pred) cov_pred += Sigma solve(cov_pred,mat_times_C_trans.T,K.T,Af_d_y_d_y,Bf_d_y_d_z,pivots_d_y) vec_d_y[:] = y_t[n+1] vec_d_y -= pred product_matrix_vector(K,vec_d_y,mu_kalman_t[n+1]) mu_kalman_t[n+1] += A_times_prev_mu product_matrix_matrix(K,C,KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC product_matrix_matrix(mat_d_z_d_z,P_tn,mat_d_z_d_z2) # To ensure symmetry E_kalman_t[n+1] = mat_d_z_d_z2 E_kalman_t[n+1] += mat_d_z_d_z2.T E_kalman_t[n+1] /= 2 mu_post_t[-1] = mu_kalman_t[-1] E_post_t[-1] = E_kalman_t[-1] # Compute last step statistics outer(mu_post_t[-1],mu_post_t[-1],z_n_z_n_post) z_n_z_n_post += E_post_t[-1] outer(y_t[-1],mu_post_t[-1],y_n_z_n_post) # Update cumulative statistics z_n_z_n_post_sum += z_n_z_n_post y_n_z_n_post_sum += y_n_z_n_post # Backward pass pred[:] = 0 cov_pred[:] = 0 for n in xrange(T-2,-1,-1): next_z_n_z_n_post[:] = z_n_z_n_post divide(E,gamma_t[n+1],vec_d_z) vec_d_z += 1 divide(A,reshape(vec_d_z,(-1,1)),A_gamma) P_tn = P_t[n] solve(P_tn.T,A_gamma,mat_d_z_d_z,Af_d_z_d_z,Bf_d_z_d_z,pivots_d_z) product_matrix_matrix(E_kalman_t[n],mat_d_z_d_z.T,J) product_matrix_vector(A_gamma,mu_kalman_t[n],vec_d_z) vec_d_z *= -1 vec_d_z += mu_post_t[n+1] product_matrix_vector(J,vec_d_z,mu_post_t[n]) mu_post_t[n] += mu_kalman_t[n] mat_d_z_d_z[:] = E_post_t[n+1] mat_d_z_d_z -= P_tn product_matrix_matrix(mat_d_z_d_z,J.T,mat_d_z_d_z2) product_matrix_matrix(J,mat_d_z_d_z2,mat_d_z_d_z) # To ensure symmetry E_post_t[n] = E_kalman_t[n] E_post_t[n] += mat_d_z_d_z E_post_t[n] += E_kalman_t[n].T E_post_t[n] += mat_d_z_d_z.T E_post_t[n] /= 2 # Compute posterior statistics product_matrix_matrix(J,E_post_t[n+1],z_n_z_n_1_post) outer(mu_post_t[n+1],mu_post_t[n],mat_d_z_d_z) z_n_z_n_1_post += mat_d_z_d_z outer(mu_post_t[n],mu_post_t[n],z_n_z_n_post) z_n_z_n_post += E_post_t[n] outer(y_t[n],mu_post_t[n],y_n_z_n_post) # Update cumulative statistics z_n_z_n_1_post_sum += z_n_z_n_1_post z_n_z_n_post_sum += z_n_z_n_post y_n_z_n_post_sum += y_n_z_n_post gamma_mean_diff += self.compute_gamma(A,E,z_n_z_n_post,next_z_n_z_n_post,gamma_t[n+1]) #print gamma_t[n+1] if get_A_denum == True: # Compute the denominator of the A update, # which requires d_z matrices of size (d_z,d_z) # (i.e. d_z different weighted sums of the z_n_z_n_post matrices) add(gamma_t[n+1],E,vec_d_z) divide(gamma_t[n+1],vec_d_z,vec_d_z2) multiply(reshape(z_n_z_n_post,(1,d_z,d_z)),reshape(vec_d_z2,(d_z,1,1)),weighted_z_n_z_n_post) A_new_denums += weighted_z_n_z_n_post have_A_denum = True new_gamma = (diag(z_n_z_n_post)+2*self.gamma_prior_beta)/(2*self.gamma_prior_alpha+3) gamma_mean_diff += sum((gamma_t[0]-new_gamma)**2)/d_z gamma_t[0] = new_gamma gamma_mean_diff /= T_sum if gamma_mean_diff < self.gamma_change_tolerance: if training == True: if have_A_denum == True: finished = True self.last_Esteps = Esteps else: get_A_denum = True else: finished = True elif gamma_mean_diff <= 10*self.gamma_change_tolerance and training == True: get_A_denum = True if self.verbose: print gamma_mean_diff, max_Esteps, Esteps if return_mu_post: mu_post += [mu_post_t] # Compute the M step estimates of the parameters if training == True: for i in xrange(d_z): solve(A_new_denums[i]+eye(d_z)*self.latent_transition_matrix_regularizer,z_n_z_n_1_post_sum[i:(i+1)].T,A_new[i:(i+1)].T) solve(z_n_z_n_post_sum+eye_d_z*self.emission_matrix_regularizer,y_n_z_n_post_sum.T,C_new.T) if return_mu_post: return (A_new,C_new),gamma_set,mu_post else: return (A_new,C_new),gamma_set
def EM_step(self,y_set,return_mu_post = False): """ Computes the posterior statistics and outputs the M step estimates of the parameters. The set of probabilities p(y_t | y_{t-1}, ... , y_1) are also given. """ # Setting variables with friendlier name d_y = self.input_size d_z = self.latent_size mu_zero = self.mu_zero V_zero = self.V_zero A = self.A C = self.C Sigma = self.Sigma E = self.E # Variables for estimating new parameters A_new = zeros((d_z,d_z)) C_new = zeros((d_y,d_z)) E_new = zeros((d_z,d_z)) Sigma_new = zeros((d_y,d_y)) mu_zero_new = zeros((d_z)) V_zero_new = zeros((d_z,d_z)) z_n_z_n_1_post_sum = zeros((d_z,d_z)) z_n_z_n_post_sum = zeros((d_z,d_z)) z_n_z_n_post_sum_no_last = zeros((d_z,d_z)) z_n_z_n_post_sum_no_first = zeros((d_z,d_z)) z_n_z_n_post_sum_first = zeros((d_z,d_z)) outer_z_n_z_n_post_sum_first = zeros((d_z,d_z)) z_n_post_sum_first = zeros((d_z)) y_n_z_n_post_sum = zeros((d_y,d_z)) y_n_y_n_sum = zeros((d_y,d_y)) cond_probs = [] # Temporary variable, to avoid memory allocation vec_d_z = zeros(d_z) vec_d_y = zeros(d_y) mat_d_z_d_z = zeros((d_z,d_z)) mat_d_z_d_z2 = zeros((d_z,d_z)) eye_d_z = eye(d_z) mat_times_C_trans = zeros((d_z,d_y)) pred = zeros(d_y) cov_pred = zeros((d_y,d_y)) K = zeros((d_z,d_y)) KC = zeros((d_z,d_z)) J = zeros((d_z,d_z)) A_times_prev_mu = zeros(d_z) Af_d_y_d_y = zeros((d_y,d_y),order='fortran') # Temporary variables Bf_d_y_d_z = zeros((d_y,d_z),order='fortran') # for calls to Af_d_z_d_z = zeros((d_z,d_z),order='fortran') # math.linalg.solve(...) Bf_d_z_d_z = zeros((d_z,d_z),order='fortran') pivots_d_y = zeros((d_y),dtype='i',order='fortran') pivots_d_z = zeros((d_z),dtype='i',order='fortran') z_n_z_n_1_post = zeros((d_z,d_z)) z_n_z_n_post = zeros((d_z,d_z)) y_n_z_n_post = zeros((d_y,d_z)) y_n_y_n = zeros((d_y,d_y)) T_sum = 0 if return_mu_post: mu_post = [] for y_t in y_set: T = len(y_t) T_sum += T mu_kalman_t = zeros((T,d_z)) # Filtering mus E_kalman_t = zeros((T,d_z,d_z)) # Filtering Es mu_post_t = zeros((T,d_z)) # Posterior mus (could be removed and computed once) E_post_t = zeros((T,d_z,d_z)) # Posterior Es (could be removed and computed once) P_t = zeros((T-1,d_z,d_z)) cond_probs_t = zeros(T) # Forward pass # Initialization at n = 0 A_times_prev_mu[:] = 0 product_matrix_matrix(V_zero,C.T,mat_times_C_trans) product_matrix_vector(C,mu_zero,pred) product_matrix_matrix(C,mat_times_C_trans,cov_pred) cov_pred += Sigma solve(cov_pred,mat_times_C_trans.T,K.T,Af_d_y_d_y,Bf_d_y_d_z,pivots_d_y) vec_d_y[:] = y_t[0] vec_d_y -= pred product_matrix_vector(K,vec_d_y,mu_kalman_t[0]) mu_kalman_t[0] += mu_zero product_matrix_matrix(K,C,KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC product_matrix_matrix(mat_d_z_d_z,V_zero,E_kalman_t[0]) cond_probs_t[0] = self.multivariate_norm_log_pdf(y_t[0],pred,cov_pred) # from n=1 to T-1 for n in xrange(T-1): P_tn = P_t[n] product_matrix_matrix(E_kalman_t[n],A.T,mat_d_z_d_z) product_matrix_matrix(A,mat_d_z_d_z,P_tn) P_tn += E product_matrix_vector(A,mu_kalman_t[n],A_times_prev_mu) product_matrix_matrix(P_tn,C.T,mat_times_C_trans) product_matrix_vector(C,A_times_prev_mu,pred) product_matrix_matrix(C,mat_times_C_trans,cov_pred) cov_pred += Sigma solve(cov_pred,mat_times_C_trans.T,K.T,Af_d_y_d_y,Bf_d_y_d_z,pivots_d_y) vec_d_y[:] = y_t[n+1] vec_d_y -= pred product_matrix_vector(K,vec_d_y,mu_kalman_t[n+1]) mu_kalman_t[n+1] += A_times_prev_mu product_matrix_matrix(K,C,KC) mat_d_z_d_z[:] = eye_d_z mat_d_z_d_z -= KC product_matrix_matrix(mat_d_z_d_z,P_tn,mat_d_z_d_z2) # To ensure symmetry E_kalman_t[n+1] = mat_d_z_d_z2 E_kalman_t[n+1] += mat_d_z_d_z2.T E_kalman_t[n+1] /= 2 cond_probs_t[n+1] = self.multivariate_norm_log_pdf(y_t[n+1],pred,cov_pred) mu_post_t[-1] = mu_kalman_t[-1] E_post_t[-1] = E_kalman_t[-1] # Compute last step statistics outer(mu_post_t[-1],mu_post_t[-1],z_n_z_n_post) z_n_z_n_post += E_post_t[-1] outer(y_t[-1],mu_post_t[-1],y_n_z_n_post) outer(y_t[-1],y_t[-1],y_n_y_n) # Update cumulative statistics z_n_z_n_post_sum += z_n_z_n_post z_n_z_n_post_sum_no_first += z_n_z_n_post y_n_z_n_post_sum += y_n_z_n_post y_n_y_n_sum += y_n_y_n # Backward pass pred[:] = 0 cov_pred[:] = 0 for n in xrange(T-2,-1,-1): P_tn = P_t[n] solve(P_tn.T,A,mat_d_z_d_z,Af_d_z_d_z,Bf_d_z_d_z,pivots_d_z) product_matrix_matrix(E_kalman_t[n],mat_d_z_d_z.T,J) product_matrix_vector(A,mu_kalman_t[n],vec_d_z) vec_d_z *= -1 vec_d_z += mu_post_t[n+1] product_matrix_vector(J,vec_d_z,mu_post_t[n]) mu_post_t[n] += mu_kalman_t[n] mat_d_z_d_z[:] = E_post_t[n+1] mat_d_z_d_z -= P_tn product_matrix_matrix(mat_d_z_d_z,J.T,mat_d_z_d_z2) product_matrix_matrix(J,mat_d_z_d_z2,mat_d_z_d_z) # To ensure symmetry E_post_t[n] = E_kalman_t[n] E_post_t[n] += mat_d_z_d_z E_post_t[n] += E_kalman_t[n].T E_post_t[n] += mat_d_z_d_z.T E_post_t[n] /= 2 # Compute posterior statistics product_matrix_matrix(J,E_post_t[n+1],z_n_z_n_1_post) outer(mu_post_t[n+1],mu_post_t[n],mat_d_z_d_z) z_n_z_n_1_post += mat_d_z_d_z outer(mu_post_t[n],mu_post_t[n],z_n_z_n_post) z_n_z_n_post += E_post_t[n] outer(y_t[n],mu_post_t[n],y_n_z_n_post) outer(y_t[n],y_t[n],y_n_y_n) # Update cumulative statistics z_n_z_n_1_post_sum += z_n_z_n_1_post z_n_z_n_post_sum += z_n_z_n_post if n > 0: z_n_z_n_post_sum_no_first += z_n_z_n_post else: z_n_z_n_post_sum_first += z_n_z_n_post z_n_post_sum_first += mu_post_t[n] outer(mu_post_t[n],mu_post_t[n],mat_d_z_d_z) outer_z_n_z_n_post_sum_first += mat_d_z_d_z z_n_z_n_post_sum_no_last += z_n_z_n_post y_n_z_n_post_sum += y_n_z_n_post y_n_y_n_sum += y_n_y_n cond_probs += [cond_probs_t] if return_mu_post: mu_post += [mu_post_t] # Compute the M step estimates of the parameters #A_new = dot(z_n_z_n_1_post_sum,inv(z_n_z_n_post_sum_no_last+ # eye_d_z*self.latent_transition_matrix_regularizer)) solve(z_n_z_n_post_sum_no_last+eye_d_z*self.latent_transition_matrix_regularizer, z_n_z_n_1_post_sum.T,A_new.T) #C_new = dot(y_n_z_n_post_sum, inv(z_n_z_n_post_sum+ # eye_d_z*self.input_transition_matrix_regularizer)) solve(z_n_z_n_post_sum+eye_d_z*self.input_transition_matrix_regularizer, y_n_z_n_post_sum.T,C_new.T) E_new[:] = z_n_z_n_post_sum_no_first z_n_z_n_1_A_T = dot(z_n_z_n_1_post_sum,A_new.T) E_new -= z_n_z_n_1_A_T.T E_new -= z_n_z_n_1_A_T # There is an error in Bishop's equation: the transpose on A is missing E_new += dot(A_new,dot(z_n_z_n_post_sum_no_last,A_new.T)) E_new += eye_d_z*self.latent_covariance_matrix_regularizer E_new /= T_sum - len(y_set) Sigma_new[:] = y_n_y_n_sum C_z_n_y_n = dot(C_new,y_n_z_n_post_sum.T) Sigma_new -= C_z_n_y_n Sigma_new -= C_z_n_y_n.T # There is an error in Bishop's equation: the transpose on C is missing Sigma_new += dot(C_new,dot(z_n_z_n_post_sum,C_new.T)) # ... idem Sigma_new += eye(d_y)*self.input_covariance_matrix_regularizer Sigma_new /= T_sum mu_zero_new[:] = z_n_post_sum_first mu_zero_new /= len(y_set) V_zero_new[:] = z_n_z_n_post_sum_first V_zero_new -= outer_z_n_z_n_post_sum_first V_zero_new /= len(y_set) if return_mu_post: return (A_new,C_new,E_new,Sigma_new,mu_zero_new,V_zero_new),cond_probs,mu_post else: return (A_new,C_new,E_new,Sigma_new,mu_zero_new,V_zero_new),cond_probs