def update_learner(self,example): self.layers[0][:] = example[0] # fprop for h in range(self.n_hidden_layers): mllin.product_matrix_vector(self.Ws[h],self.layers[h],self.layer_acts[h+1]) self.layer_acts[h+1] += self.cs[h] if self.activation_function == 'sigmoid': mlnonlin.sigmoid(self.layer_acts[h+1],self.layers[h+1]) elif self.activation_function == 'tanh': mlnonlin.tanh(self.layer_acts[h+1],self.layers[h+1]) elif self.activation_function == 'reclin': mlnonlin.reclin(self.layer_acts[h+1],self.layers[h+1]) else: raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'') mllin.product_matrix_vector(self.U,self.layers[-1],self.output_act) self.output_act += self.d mlnonlin.softmax(self.output_act,self.output) self.doutput_act[:] = self.output self.doutput_act[example[1]] -= 1 self.doutput_act *= self.learning_rate/(1.+self.decrease_constant*self.n_updates) self.dd[:] = self.doutput_act mllin.outer(self.doutput_act,self.layers[-1],self.dU) mllin.product_matrix_vector(self.U.T,self.doutput_act,self.dlayers[-1]) if self.activation_function == 'sigmoid': mlnonlin.dsigmoid(self.layers[-1],self.dlayers[-1],self.dlayer_acts[-1]) elif self.activation_function == 'tanh': mlnonlin.dtanh(self.layers[-1],self.dlayers[-1],self.dlayer_acts[-1]) elif self.activation_function == 'reclin': mlnonlin.dreclin(self.layers[-1],self.dlayers[-1],self.dlayer_acts[-1]) else: raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'') for h in range(self.n_hidden_layers-1,-1,-1): self.dcs[h][:] = self.dlayer_acts[h+1] mllin.outer(self.dlayer_acts[h+1],self.layers[h],self.dWs[h]) mllin.product_matrix_vector(self.Ws[h].T,self.dlayer_acts[h+1],self.dlayers[h]) if self.activation_function == 'sigmoid': mlnonlin.dsigmoid(self.layers[h],self.dlayers[h],self.dlayer_acts[h]) elif self.activation_function == 'tanh': mlnonlin.dtanh(self.layers[h],self.dlayers[h],self.dlayer_acts[h]) elif self.activation_function == 'reclin': mlnonlin.dreclin(self.layers[h],self.dlayers[h],self.dlayer_acts[h]) else: raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'') self.U -= self.dU self.d -= self.dd for h in range(self.n_hidden_layers-1,-1,-1): self.Ws[h] -= self.dWs[h] self.cs[h] -= self.dcs[h] self.n_updates += 1
def fprop(self,input): """ Computes the output given some input. Puts the result in ``self.output`` """ self.input[:] = input self.output_act[:] = self.d for k in range(self.n_k_means): if self.n_k_means_inputs == self.input_size: c = self.clusterings[k].compute_cluster(self.input) else: c = self.clusterings[k].compute_cluster(self.input[self.k_means_subset_inputs[k]]) idx = c + k*self.n_clusters self.cluster_indices[k] = c mllin.product_matrix_vector(self.Ws[idx],self.input,self.layer_acts[k]) self.layer_acts[k] += self.cs[idx] #mlnonlin.sigmoid(self.layer_acts[k],self.layers[k]) if self.activation_function == 'sigmoid': mlnonlin.sigmoid(self.layer_acts[k],self.layers[k]) elif self.activation_function == 'tanh': mlnonlin.tanh(self.layer_acts[k],self.layers[k]) elif self.activation_function == 'reclin': mlnonlin.reclin(self.layer_acts[k],self.layers[k]) else: raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'') mllin.product_matrix_vector(self.Vs[idx],self.layers[k],self.output_acts[k]) self.output_act += self.output_acts[k] mlnonlin.softmax(self.output_act,self.output) if self.autoencoder_regularization != 0: self.dae_input[:] = input self.rng.shuffle(self.input_idx) self.dae_input[self.input_idx[:int(self.autoencoder_missing_fraction*self.input_size)]] = 0 self.dae_output_act[:] = self.dae_d for k in range(self.n_k_means): idx = self.cluster_indices[k] + k*self.n_clusters mllin.product_matrix_vector(self.Ws[idx],self.dae_input,self.dae_layer_acts[k]) self.dae_layer_acts[k] += self.cs[idx] #mlnonlin.sigmoid(self.dae_layer_acts[k],self.dae_layers[k]) if self.activation_function == 'sigmoid': mlnonlin.sigmoid(self.dae_layer_acts[k],self.dae_layers[k]) elif self.activation_function == 'tanh': mlnonlin.tanh(self.dae_layer_acts[k],self.dae_layers[k]) elif self.activation_function == 'reclin': mlnonlin.reclin(self.dae_layer_acts[k],self.dae_layers[k]) else: raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'') mllin.product_matrix_vector(self.Ws[idx].T,self.dae_layers[k],self.dae_output_acts[k]) self.dae_output_act += self.dae_output_acts[k] self.dae_output[:] = self.dae_output_act
def apply_activation(self, input_data, output): """ Apply the activation function """ if self.activation_function == "sigmoid": mlnonlin.sigmoid(input_data, output) elif self.activation_function == "tanh": mlnonlin.tanh(input_data, output) elif self.activation_function == "reclin": mlnonlin.reclin(input_data, output) elif self.activation_function == "softmax": m = input_data.max(axis=1) output[:] = np.exp(input_data - m.reshape((-1, 1))) output[:] /= output.sum(axis=1).reshape((-1, 1)) else: raise ValueError("activation_function must be either 'sigmoid', 'tanh' or 'reclin'")
def apply_activation(self, input_data, output): """ Apply the activation function """ if self.activation_function == 'sigmoid': mlnonlin.sigmoid(input_data,output) elif self.activation_function == 'tanh': mlnonlin.tanh(input_data,output) elif self.activation_function == 'reclin': mlnonlin.reclin(input_data,output) elif self.activation_function == 'softmax': m = input_data.max(axis=1) output[:] = np.exp(input_data-m.reshape((-1,1))) output[:] /= output.sum(axis=1).reshape((-1,1)) else: raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'')
def use_learner(self,example): output = np.zeros((self.n_classes)) self.layers[0][:] = example[0] # fprop for h in range(self.n_hidden_layers): mllin.product_matrix_vector(self.Ws[h],self.layers[h],self.layer_acts[h+1]) self.layer_acts[h+1] += self.cs[h] if self.activation_function == 'sigmoid': mlnonlin.sigmoid(self.layer_acts[h+1],self.layers[h+1]) elif self.activation_function == 'tanh': mlnonlin.tanh(self.layer_acts[h+1],self.layers[h+1]) elif self.activation_function == 'reclin': mlnonlin.reclin(self.layer_acts[h+1],self.layers[h+1]) else: raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'') mllin.product_matrix_vector(self.U,self.layers[-1],self.output_act) self.output_act += self.d mlnonlin.softmax(self.output_act,output) return [output.argmax(),output]