예제 #1
0
def get_param_grids():
    lrs = [10**i for i in range(-4, -2)]
    gd_params = {'learning_rate': [0.0001], 'max_iters': [2000]}
    rhc_params = {
        'learning_rate': [0.1],
        'restarts': [100],  #[10] 
        'max_iters': [2000]
    }
    sa_params = {
        'learning_rate': [0.0001, 0.001, 0.01, 0.1],
        'schedule': [
            ExpDecay(),
            ExpDecay(exp_const=0.002),
            ExpDecay(exp_const=1 / 2000),
            GeomDecay(),
            GeomDecay(decay=.999),
            ArithDecay(),
            ArithDecay(decay=1 / 2000),
        ],
        'max_iters': [2000]
    }
    ga_params = {
        'learning_rate': [0.0001, 0.001, 0.01, 0.1],
        'pop_size': [400],  #[200, 400], #[200]
        'mutation_prob': [0.1, .2, .5, .9],
        'max_iters': [500]
    }

    params = {
        'gradient_descent': gd_params,
        'random_hill_climb': rhc_params,
        'simulated_annealing': sa_params,
        'genetic_alg': ga_params
    }
    return params
예제 #2
0
파일: test_decay.py 프로젝트: tapos/mlrose
    def test_exp_below_min():
        """Test exponential decay evaluation function for case where result is
        below the minimum"""

        schedule = ExpDecay(init_temp=10, exp_const=0.05, min_temp=1)
        x = schedule.evaluate(50)

        assert x == 1
예제 #3
0
파일: test_decay.py 프로젝트: tapos/mlrose
    def test_exp_above_min():
        """Test exponential decay evaluation function for case where result is
        above the minimum"""

        schedule = ExpDecay(init_temp=10, exp_const=0.05, min_temp=1)
        x = schedule.evaluate(5)

        assert round(x, 5) == 7.78801
def extract_best_hyperparameters(gridsearch_results):
    """extract_best_hyperparameters

    Parameters
    ----------

    gridsearch_results : dataframe of gridsearch results

    Returns
    the best hyperparameters as a dictionary
    -------
    """
    params = [col for col in gridsearch_results.columns if col not in METRICS]

    best_row = gridsearch_results["Best Fitness"].idxmax()
    best_params = gridsearch_results[params].iloc[best_row].to_dict()
    for key, value in best_params.items():
        if key == "schedule":  # Special case of conversion
            best_params[key] = ExpDecay(exp_const=value)
        if value >= 1:
            best_params[key] = int(
                value
            )  # This might not be very safe but it works for these cases

    return best_params
예제 #5
0
def get_param_grids():
    lrs = [10**i for i in range(-4, -2)]
    gd_params = {'learning_rate': lrs, 'max_iters': [2000]}
    rhc_params = {
        'learning_rate': lrs,
        'restarts': [10, 30],  #[10] 
        'max_iters': [2000]
    }
    sa_params = {
        'learning_rate': lrs,
        'schedule': [GeomDecay(), ArithDecay(),
                     ExpDecay()],
        'max_iters': [2000]
    }
    ga_params = {
        'learning_rate': lrs,
        'pop_size': [200],  #[200]
        'mutation_prob': [0.05, 0.1, 0.2],  #[0.1]
        'max_iters': [500]
    }

    params = {
        'gradient_descent': gd_params,
        'random_hill_climb': rhc_params,
        'simulated_annealing': sa_params,
        'genetic_alg': ga_params
    }
    return params
예제 #6
0
def extract_best_hyperparameters(algo, output_dir):
    if algo == "gs":
        return best_nn_params

    filename = os.path.join(output_dir, f"{algo}_nn_gsresults.csv")
    df = pd.read_csv(filename, index_col=0)

    params = [col for col in df.columns if col not in METRICS + ["Fold"]]
    grouped = df.groupby(params)
    mean_groups = grouped.mean().reset_index()
    max_ix = mean_groups["Val_F1"].argmax()

    best_params = mean_groups.loc[max_ix, params].to_dict()

    for key, value in best_params.items():
        if key == "schedule":
            best_params[key] = ExpDecay(exp_const=value)
        elif value.is_integer():
            best_params[key] = int(value)

    return best_params
def get_param_grids():
    lrs = [10**i for i in range(-4, -2)]
    gd_params = {'learning_rate': [0.0001], 'max_iters': [40]}
    rhc_params = {
        'learning_rate': [0.1],
        'restarts': [100],  #[10] 
        'max_iters': [4000]
    }
    sa_params = {
        'learning_rate': [0.1],
        'schedule': [
            #AirithDecay(),
            ExpDecay(),
            #ExpDecay(exp_const=0.01),
            #ExpDecay(exp_const=0.001),
            #ExpDecay(exp_const=0.002),
            #ExpDecay(exp_const=0.005),
            #ExpDecay(exp_const=0.002, init_temp=.9),
            #ExpDecay(exp_const=0.002, init_temp=.8),
            #ExpDecay(exp_const=0.002, init_temp=.7),
        ],
        'max_iters': [4000]
    }
    ga_params = {
        'learning_rate': [0.1],  #, 0.01],
        'pop_size': [400],  #[200, 400], #[200]
        'mutation_prob': [0.9],  #[0.1]
        'clip_max': [100],
        'max_iters': [1000]
    }

    params = {
        'gradient_descent': gd_params,
        'random_hill_climb': rhc_params,
        'simulated_annealing': sa_params,
        'genetic_alg': ga_params
    }
    return params
    "Time Elapsed",
    "Best Fitness",
    "Fitness Evaluations",
    "Global Optimum",
    "Found Global Optimum",
]
OUTPUT_DIR = "output"
MAX_RESTARTS = 10

GRID = {
    "rhc": {
        "restarts": [10]
    },
    "sa": {
        "schedule": [
            ExpDecay(exp_const=0.001),
            ExpDecay(exp_const=0.005),
            ExpDecay(exp_const=0.01),
            ExpDecay(exp_const=0.05),
            ExpDecay(exp_const=0.1),
        ],
    },
    "ga": {
        "pop_size": [200],
        "mutation_prob": [0.05, 0.1, 0.2, 0.4]
    },
    "mimic": {
        "pop_size": [200],
        "keep_pct": [0.1, 0.3, 0.5, 0.7, 0.9]
    },
}
예제 #9
0
def get_optimizers():
    return {
        'RHC': {
            'function': random_hill_climb,
            'kwargs': [{}],
        },
        'SA': {
            'function':
            simulated_annealing,
            'kwargs': [
                {
                    'schedule': ExpDecay()
                },
                {
                    'schedule': ExpDecay(exp_const=0.01)
                },
                {
                    'schedule': ExpDecay(exp_const=0.002)
                },
                {
                    'schedule': GeomDecay()
                },
                {
                    'schedule': GeomDecay(decay=.98)
                },
                {
                    'schedule': GeomDecay(decay=.96)
                },
                {
                    'schedule': ArithDecay()
                },
                {
                    'schedule': ArithDecay(decay=0.001)
                },
                {
                    'schedule': ArithDecay(decay=1 / 5000)
                },
                {
                    'schedule': ExpDecay(exp_const=0.002)
                },
            ]
        },
        'GA': {
            'function':
            genetic_alg,
            'kwargs': [
                {
                    'pop_size': 200,
                    'mutation_prob': 0.1
                },
                {
                    'pop_size': 200,
                    'mutation_prob': 0.2
                },
                {
                    'pop_size': 200,
                    'mutation_prob': 0.05
                },
                {
                    'pop_size': 800,
                    'mutation_prob': 0.1
                },
            ]
        },
        'MIMIC': {
            'function':
            mimic,
            'kwargs': [
                {
                    'pop_size': 200,
                    'keep_pct': 0.2,
                    #'fast_mimic': True
                },
                {
                    'pop_size': 200,
                    'keep_pct': 0.4,
                    #'fast_mimic': True
                },
                {
                    'pop_size': 400,
                    'keep_pct': 0.2,
                },
            ]
        }
    }
def get_optimizers():
    return {
        #'RHC': {
        #    'function': random_hill_climb,
        #    'kwargs': [
        #        {}
        #    ],
        #},
        'SA': {
            'function':
            simulated_annealing,
            'kwargs': [
                {
                    'schedule': ExpDecay()
                },
                #{'schedule': ExpDecay(exp_const=0.01)},
                {
                    'schedule': ExpDecay(exp_const=0.002)
                },
                {
                    'schedule': ExpDecay(exp_const=1 / 5000)
                },
                {
                    'schedule': GeomDecay()
                },
                #{'schedule': GeomDecay(decay=.98)},
                {
                    'schedule': GeomDecay(decay=.9993)
                },
                {
                    'schedule': ArithDecay()
                },
                #{'schedule': ArithDecay(decay=0.001)},
                {
                    'schedule': ArithDecay(decay=1 / 5000)
                },
            ]
        },
        #'GA': {
        #    'function': genetic_alg,
        #    'kwargs': [
        #        #{'pop_size': 200,
        #        # 'mutation_prob': 0.1
        #        #},
        #        #{'pop_size': 200,
        #        # 'mutation_prob': 0.2
        #        #},
        #        #{'pop_size': 200,
        #        # 'mutation_prob': 0.05
        #        #},
        #        #{'pop_size': 400,
        #        # 'mutation_prob': 0.4
        #        #},
        #        #{'pop_size': 400,
        #        # 'mutation_prob': 0.2
        #        #},
        #        #{'pop_size': 400,
        #        # 'mutation_prob': 0.1
        #        #},
        #        {'pop_size': 800,
        #         'mutation_prob': 0.1
        #        },
        #   ]
        #},
        #'MIMIC': {
        #    'function': mimic,
        #    'kwargs': [
        #        {'pop_size': 400,
        #         'keep_pct': 0.2,
        #        },
        #        {'pop_size': 400,
        #         'keep_pct': 0.1,
        #        },
        #        {'pop_size': 400,
        #         'keep_pct': 0.05,
        #        },
        #        #{'pop_size': 800,
        #        # 'keep_pct': 0.2,
        #        #},
        #        #{'pop_size': 800,
        #        # 'keep_pct': 0.1,
        #        #},
        #     ]

        #}
    }