def test_evaluate_assert_it_returns_prob_array(self): arch = MagicMock() arch.evaluate.return_value = [0.1, 0.8, 0.1] model = Model(arch) result = model.evaluate(None) self.assertEqual(result, [0.1, 0.8, 0.1])
evaluations = self.evaluate(dataset) error = labels - evaluations self._weights += np.sum(self._learning_rate * error * np.transpose(dataset), axis=1) return (np.average(error), evaluations) def evaluate(self, dataset): sum_ = np.sum(dataset * self._weights, axis=1) return (sum_ > self._threshold).astype(int) model = Model(Perceptron(2)) epochs, costs, accuracies, *_ = model.train( np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), np.array([0, 0, 0, 1]), None, None, SimpleTrainer(), PairwiseMeasurer(), None, epochs=10, ) print('Epochs: ', epochs) print('Costs: ', costs) print('Accuracies: ', accuracies) print('Predictions:', model.evaluate(np.array([[0, 0], [0, 1], [1, 0], [1, 1]])))