def test_shape_dim2(self): X = numpy.random.randn(10, 3) w = numpy.array([[10, 20, 3], [-10, -20, 0.5]]) for act in ['sigmoid', 'sigmoid4', 'expit', 'identity', 'relu', 'leakyrelu']: with self.subTest(act=act): neu = NeuralTreeNode(w, bias=[-4, 0.5], activation=act) pred = neu.predict(X) self.assertEqual(pred.shape, (X.shape[0], 2))
def test_neural_net_gradient_regression_2(self): X = numpy.abs(numpy.random.randn(10, 2)) w1 = numpy.array([-0.5, 0.8, -0.6]) noise = numpy.random.randn(X.shape[0]) / 10 noise[0] = 0 noise[1] = 0.07 X[1, 0] = 0.7 X[1, 1] = -0.5 y = w1[0] + X[:, 0] * w1[1] + X[:, 1] * w1[2] + noise for act in [ 'relu', 'sigmoid', 'identity', 'leakyrelu', 'sigmoid4', 'expit' ]: with self.subTest(act=act): neu = NeuralTreeNode(w1[1:], bias=w1[0], activation=act) loss1 = neu.loss(X, y) pred1 = neu.predict(X) if act == 'relu': self.assertEqualArray(pred1[1:2], numpy.array([0.36])) pred11 = neu.predict(X) self.assertEqualArray(pred11[1:2], numpy.array([0.36])) net = NeuralTreeNet(X.shape[1], empty=True) net.append(neu, numpy.arange(0, 2)) ide = NeuralTreeNode(numpy.array([1], dtype=X.dtype), bias=numpy.array([0], dtype=X.dtype), activation='identity') net.append(ide, numpy.arange(2, 3)) pred2 = net.predict(X) loss2 = net.loss(X, y) self.assertEqualArray(pred1, pred2[:, -1]) self.assertEqualArray(pred2[:, -2], pred2[:, -1]) self.assertEqualArray(pred2[:, 2], pred2[:, 3]) self.assertEqualArray(loss1, loss2) for p in range(0, 5): grad1 = neu.gradient(X[p], y[p]) grad2 = net.gradient(X[p], y[p]) self.assertEqualArray(grad1, grad2[:3])
def test_neural_tree_node(self): self.assertRaise(lambda: NeuralTreeNode([0, 1], 0.5, 'identity2')) neu = NeuralTreeNode([0, 1], 0.5, 'identity') res = neu.predict(numpy.array([4, 5])) self.assertEqual(res, 5.5) st = repr(neu) self.assertEqual("NeuralTreeNode(weights=array([0., 1.]), " "bias=0.5, activation='identity')", st) st = io.BytesIO() pickle.dump(neu, st) st = io.BytesIO(st.getvalue()) neu2 = pickle.load(st) self.assertTrue(neu == neu2)
def test_gradients(self): X = numpy.array([0.1, 0.2, -0.3]) w = numpy.array([10, 20, 3]) g = numpy.array([-0.7], dtype=numpy.float64) for act in [ 'sigmoid', 'sigmoid4', 'expit', 'identity', 'relu', 'leakyrelu' ]: with self.subTest(act=act): neu = NeuralTreeNode(w, bias=-4, activation=act) pred = neu.predict(X) self.assertEqual(pred.shape, tuple()) grad = neu.gradient_backward(g, X) self.assertEqual(grad.shape, (4, )) grad = neu.gradient_backward(g, X, inputs=True) self.assertEqual(grad.shape, (3, )) ww = neu.training_weights neu.update_training_weights(-ww) w0 = neu.training_weights self.assertEqualArray(w0, numpy.zeros(w0.shape)) X = numpy.array([0.1, 0.2, -0.3]) w = numpy.array([[10, 20, 3], [-10, -20, 3]]) b = numpy.array([-3, 4], dtype=numpy.float64) g = numpy.array([-0.7, 0.2], dtype=numpy.float64) for act in ['softmax', 'softmax4']: with self.subTest(act=act): neu = NeuralTreeNode(w, bias=b, activation=act) pred = neu.predict(X) self.assertAlmostEqual(numpy.sum(pred), 1.) self.assertEqual(pred.shape, (2, )) grad = neu.gradient_backward(g, X) self.assertEqual(grad.shape, (2, 4)) grad = neu.gradient_backward(g, X, inputs=True) self.assertEqual(grad.shape, (3, )) ww = neu.training_weights neu.update_training_weights(-ww) w0 = neu.training_weights self.assertEqualArray(w0, numpy.zeros(w0.shape))
def test_shape_dim2(self): X = numpy.random.randn(10, 3) w = numpy.array([[10, 20, 3], [-10, -20, 0.5]]) first = None for act in [ 'sigmoid', 'sigmoid4', 'expit', 'identity', 'relu', 'leakyrelu' ]: with self.subTest(act=act): neu = NeuralTreeNode(w, bias=[-4, 0.5], activation=act) pred = neu.predict(X) self.assertEqual(pred.shape, (X.shape[0], 2)) text = str(neu) self.assertIn('NeuralTreeNode(', text) if first is None: first = neu else: self.assertFalse(neu == first) self.assertEqual(neu.ndim, 3) loss = neu.loss(X[0], 0.) self.assertEqual(loss.shape, (2, )) loss = neu.loss( X, numpy.zeros((X.shape[0], 1), dtype=numpy.float64)) self.assertEqual(loss.shape, (10, 2))