def run_on_real_dataset(dataset_dir): """`dataset_dir` should contain a file `*.data` in NumPy format.""" if os.path.isdir(dataset_dir): data_files = [ x for x in os.listdir(dataset_dir) if x.endswith('.data') ] if len(data_files) != 1: raise ValueError("The dataset directory {} ".format(dataset_dir) + "should contain one `.data` file but got " + "{}.".format(data_files)) data_file = data_files[0] data_path = os.path.join(dataset_dir, data_file) name_expe = data_file.split('.')[0] # Load real dataset and binarize perfs = binarize(np.loadtxt(data_path)) # da_matrix = DAMatrix(perfs=perf, name=name_expe) da_matrix = DAMatrix.load(dataset_dir) da_matrix.perfs = perfs meta_learners = get_the_meta_learners( exclude_optimal=True)[1:] # Exclude random run_expe(da_matrix, meta_learners=meta_learners, name_expe=name_expe, with_once_random=True, show_legend=True) else: raise ValueError("Not a directory: {}".format(dataset_dir))
def test_nfldamatrix(): da_matrix = NFLDAMatrix() path_to_dir = da_matrix.save() da_matrix2 = DAMatrix.load(path_to_dir) print(da_matrix.perfs) print(da_matrix2.perfs)