d_error.mean(), g_fake_error.mean(), fake_data.mean(), fake_data.std()) if __name__ == '__main__': basic_config = { 'g': { 'in_size': 1, 'hidden_size': 50, 'out_size': 1, 'learning_rate': 2e-3, 'betas': (0.9, 0.999), }, 'd': { 'in_size': 1, 'hidden_size': 50, 'out_size': 1, 'learning_rate': 2e-3, 'betas': (0.9, 0.999), }, 'd_steps': 1, 'g_steps': 1, 'batch_size': 100, 'num_epoch': 1000, 'print_interval': 100, } gan = VanillaGAN(structuralize('config', **basic_config)) gan.train()
if opt.cuda: try: device = 'cuda:%d' % (find_gpu(1)[0]) except: logger.warning('CUDA device is unavailable, fall back to CPU') device = 'cpu' else: device = 'cpu' basic_config = { 'g': { 'in_channels': 100, 'learning_rate': 2e-4, 'betas': (0.5, 0.999), }, 'd': { 'learning_rate': 2e-4, 'betas': (0.5, 0.999), }, 'device': device, 'batch_size': 64, 'num_epoch': 10, 'print_interval': 5, 'verbose': opt.verbose, 'datadir': 'dataset/data/mnist', } gan = LSGAN(structuralize('config', **basic_config), logger) gan.train()