def main(args): # Inference single image by native apis. model = init_model(args.config, args.checkpoint, device=args.device) model_result = inference_model(model, args.img) show_result_pyplot(model, args.img, model_result, title='pytorch_result') # Inference single image by torchserve engine. url = 'http://' + args.inference_addr + '/predictions/' + args.model_name with open(args.img, 'rb') as image: response = requests.post(url, image) server_result = response.json() show_result_pyplot(model, args.img, server_result, title='server_result') assert np.allclose(model_result['pred_score'], server_result['pred_score']) print('Test complete, the results of PyTorch and TorchServe are the same.')
def main(): parser = ArgumentParser() parser.add_argument('img', help='Image file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('--device', default='cuda:0', help='Device used for inference') args = parser.parse_args() # build the model from a config file and a checkpoint file model = init_model(args.config, args.checkpoint, device=args.device) # test a single image result = inference_model(model, args.img) # print result on terminal print(result)
def inference(self, data, *args, **kwargs): results = [] for image in data: results.append(inference_model(self.model, image)) return results