예제 #1
0
 def __call__(self, results):
     if np.random.rand() > self.prob:
         return results
     magnitude = random_negative(self.magnitude, self.random_negative_prob)
     for key in results.get('img_fields', ['img']):
         img = results[key]
         img_sharpened = mmcv.adjust_sharpness(img, factor=1 + magnitude)
         results[key] = img_sharpened.astype(img.dtype)
     return results
예제 #2
0
    def test_adjust_sharpness(self, nb_rand_test=100):

        def _adjust_sharpness(img, factor):
            # adjust the sharpness of image using
            # PIL.ImageEnhance.Sharpness
            from PIL.ImageEnhance import Sharpness
            from PIL import Image
            img = Image.fromarray(img)
            sharpened_img = Sharpness(img).enhance(factor)
            return np.asarray(sharpened_img)

        img = np.array([[0, 128, 255], [1, 127, 254], [2, 129, 253]],
                       dtype=np.uint8)
        img = np.stack([img, img, img], axis=-1)

        # test case with invalid type of kernel
        with pytest.raises(AssertionError):
            mmcv.adjust_sharpness(img, 1., kernel=1.)
        # test case with invalid shape of kernel
        kernel = np.ones((3, 3, 3))
        with pytest.raises(AssertionError):
            mmcv.adjust_sharpness(img, 1., kernel=kernel)
        # test case with all-zero kernel, factor 0.0
        kernel = np.zeros((3, 3))
        assert_array_equal(
            mmcv.adjust_sharpness(img, 0., kernel=kernel), np.zeros_like(img))

        # test case with factor 1.0
        assert_array_equal(mmcv.adjust_sharpness(img, 1.), img)
        # test adjust_sharpness with randomly sampled images and factors.
        for _ in range(nb_rand_test):
            img = np.clip(
                np.random.uniform(0, 1, (1000, 1200, 3)) * 260, 0,
                255).astype(np.uint8)
            factor = np.random.uniform()
            # Note the gap between PIL.ImageEnhance.Sharpness and
            # mmcv.adjust_sharpness mainly comes from the difference ways of
            # handling img edges when applying filters
            np.testing.assert_allclose(
                mmcv.adjust_sharpness(img, factor).astype(np.int32)[1:-1,
                                                                    1:-1],
                _adjust_sharpness(img, factor).astype(np.int32)[1:-1, 1:-1],
                rtol=0,
                atol=1)