def prepare_split_stance(self, motion: VmdMotion, target_bone_name: str):
        fnos = motion.get_bone_fnos(target_bone_name)

        for fidx, fno in enumerate(fnos):
            if fidx == 0:
                continue

            prev_bf = motion.bones[target_bone_name][fnos[fidx - 1]]
            bf = motion.bones[target_bone_name][fno]
            diff_degree = abs(prev_bf.rotation.toDegree() -
                              bf.rotation.toDegree())

            if diff_degree >= 150:
                # 回転量が約150度以上の場合、半分に分割しておく
                half_fno = prev_bf.fno + round((bf.fno - prev_bf.fno) / 2)

                if prev_bf.fno < half_fno < bf.fno:
                    # キーが追加できる状態であれば、追加
                    half_bf = motion.calc_bf(target_bone_name, half_fno)
                    motion.regist_bf(half_bf, target_bone_name, half_fno)
예제 #2
0
def calc_IK(model: PmxModel,
            links: BoneLinks,
            motion: VmdMotion,
            fno: int,
            target_pos: MVector3D,
            ik_links: BoneLinks,
            max_count=10):
    for bone_name in list(ik_links.all().keys())[1:]:
        # bfをモーションに登録
        bf = motion.calc_bf(bone_name, fno)
        motion.regist_bf(bf, bone_name, fno)

    local_effector_pos = MVector3D()
    local_target_pos = MVector3D()

    for cnt in range(max_count):
        # 規定回数ループ
        for ik_idx, joint_name in enumerate(list(ik_links.all().keys())[1:]):
            # 処理対象IKボーン
            ik_bone = ik_links.get(joint_name)

            # 現在のボーングローバル位置と行列を取得
            global_3ds_dic, total_mats = calc_global_pos(model,
                                                         links,
                                                         motion,
                                                         fno,
                                                         return_matrix=True)

            # エフェクタ(末端)
            global_effector_pos = global_3ds_dic[ik_links.first_name()]

            # 注目ノード(実際に動かすボーン)
            joint_mat = total_mats[joint_name]

            # ワールド座標系から注目ノードの局所座標系への変換
            inv_coord = joint_mat.inverted()

            # 注目ノードを起点とした、エフェクタのローカル位置
            local_effector_pos = inv_coord * global_effector_pos
            local_target_pos = inv_coord * target_pos

            #  (1) 基準関節→エフェクタ位置への方向ベクトル
            basis2_effector = local_effector_pos.normalized()
            #  (2) 基準関節→目標位置への方向ベクトル
            basis2_target = local_target_pos.normalized()

            # ベクトル (1) を (2) に一致させるための最短回転量(Axis-Angle)
            # 回転角
            rotation_dot = MVector3D.dotProduct(basis2_effector, basis2_target)
            # 回転角度
            rotation_radian = math.acos(max(-1, min(1, rotation_dot)))

            if abs(rotation_radian) > 0.0001:
                # 一定角度以上の場合

                # 回転軸
                rotation_axis = MVector3D.crossProduct(
                    basis2_effector, basis2_target).normalized()
                # 回転角度
                rotation_degree = math.degrees(rotation_radian)

                # 関節回転量の補正(最大変位量を制限する)
                correct_qq = MQuaternion.fromAxisAndAngle(
                    rotation_axis, min(rotation_degree, ik_bone.degree_limit))

                # ジョイントに補正をかける
                bf = motion.calc_bf(joint_name, fno)
                new_ik_qq = correct_qq * bf.rotation

                # IK軸制限がある場合、上限下限をチェック
                if ik_bone.ik_limit_min != MVector3D(
                ) and ik_bone.ik_limit_max != MVector3D():
                    x_qq, y_qq, z_qq, yz_qq = separate_local_qq(
                        fno, bone_name, new_ik_qq,
                        model.get_local_x_axis(ik_bone.name))

                    logger.test("new_ik_qq: %s, x_qq: %s, y_qq: %s, z_qq: %s",
                                new_ik_qq.toEulerAngles(),
                                x_qq.toEulerAngles(), y_qq.toEulerAngles(),
                                z_qq.toEulerAngles())
                    logger.test("new_ik_qq: %s, x_qq: %s, y_qq: %s, z_qq: %s",
                                new_ik_qq.toDegree(), x_qq.toDegree(),
                                y_qq.toDegree(), z_qq.toDegree())

                    euler_x = min(
                        ik_bone.ik_limit_max.x(),
                        max(ik_bone.ik_limit_min.x(), x_qq.toDegree()))
                    euler_y = min(
                        ik_bone.ik_limit_max.y(),
                        max(ik_bone.ik_limit_min.y(), y_qq.toDegree()))
                    euler_z = min(
                        ik_bone.ik_limit_max.z(),
                        max(ik_bone.ik_limit_min.z(), z_qq.toDegree()))

                    logger.test(
                        "limit_qq: %s -> %s", new_ik_qq.toEulerAngles(),
                        MQuaternion.fromEulerAngles(euler_x, euler_y,
                                                    euler_z).toEulerAngles())

                    new_ik_qq = MQuaternion.fromEulerAngles(
                        euler_x, euler_y, euler_z)

                bf.rotation = new_ik_qq

        # 位置の差がほとんどない場合、終了
        if (local_effector_pos - local_target_pos).lengthSquared() < 0.0001:
            return

    return