예제 #1
0
    def _do_evaluate(self, runner):
        """perform evaluation and save ckpt."""
        # Synchronization of BatchNorm's buffer (running_mean
        # and running_var) is not supported in the DDP of pytorch,
        # which may cause the inconsistent performance of models in
        # different ranks, so we broadcast BatchNorm's buffers
        # of rank 0 to other ranks to avoid this.
        if self.broadcast_bn_buffer:
            model = runner.model
            for name, module in model.named_modules():
                if isinstance(module,
                              _BatchNorm) and module.track_running_stats:
                    dist.broadcast(module.running_var, 0)
                    dist.broadcast(module.running_mean, 0)

        if not self._should_evaluate(runner):
            return

        tmpdir = self.tmpdir
        if tmpdir is None:
            tmpdir = osp.join(runner.work_dir, '.eval_hook')

        from mmdet.apis import multi_gpu_test
        results = multi_gpu_test(runner.model,
                                 self.dataloader,
                                 tmpdir=tmpdir,
                                 gpu_collect=self.gpu_collect,
                                 not_encode_mask=self.not_encode_mask)
        if runner.rank == 0:
            print('\n')
            runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
            key_score = self.evaluate(runner, results)

            if self.save_best:
                self._save_ckpt(runner, key_score)
예제 #2
0
    def after_train_epoch(self, runner):
        if not self.evaluation_flag(runner):
            return

        from mmdet.apis import multi_gpu_test
        tmpdir = self.tmpdir
        if tmpdir is None:
            tmpdir = osp.join(runner.work_dir, '.eval_hook')
        results = multi_gpu_test(
            runner.model,
            self.dataloader,
            tmpdir=tmpdir,
            gpu_collect=self.gpu_collect)
        if runner.rank == 0:
            print('\n')
            key_score = self.evaluate(runner, results)
            if self.save_best:
                best_score = runner.meta['hook_msgs'].get(
                    'best_score', self.init_value_map[self.rule])
                if self.compare_func(key_score, best_score):
                    best_score = key_score
                    runner.meta['hook_msgs']['best_score'] = best_score
                    last_ckpt = runner.meta['hook_msgs']['last_ckpt']
                    runner.meta['hook_msgs']['best_ckpt'] = last_ckpt
                    mmcv.symlink(
                        last_ckpt,
                        osp.join(runner.work_dir,
                                 f'best_{self.key_indicator}.pth'))
                    self.logger.info(
                        f'Now best checkpoint is {last_ckpt}.'
                        f'Best {self.key_indicator} is {best_score:0.4f}')
예제 #3
0
 def before_run(self, runner):
     from mmdet.apis import multi_gpu_test
     results = multi_gpu_test(runner.model,
                              self.dataloader,
                              tmpdir=osp.join(runner.work_dir,
                                              '.eval_hook'),
                              gpu_collect=self.gpu_collect)
     if runner.rank == 0:
         print('\n')
         self.evaluate(runner, results)
 def after_train_epoch(self, runner):
     if not self.every_n_epochs(runner, self.interval):
         return
     from mmdet.apis import multi_gpu_test
     results = multi_gpu_test(runner.model,
                              self.dataloader,
                              tmpdir=osp.join(runner.work_dir,
                                              '.eval_hook'),
                              gpu_collect=self.gpu_collect)
     if runner.rank == 0:
         print('\n')
         self.evaluate(runner, results)
예제 #5
0
 def after_train_epoch(self, runner):
     if not self.evaluation_flag(runner):
         return
     from mmdet.apis import multi_gpu_test
     tmpdir = self.tmpdir
     if tmpdir is None:
         tmpdir = osp.join(runner.work_dir, '.eval_hook')
     results = multi_gpu_test(runner.model,
                              self.dataloader,
                              tmpdir=tmpdir,
                              gpu_collect=self.gpu_collect)
     if runner.rank == 0:
         print('\n')
         self.evaluate(runner, results)
예제 #6
0
    def after_train_epoch(self, runner):
        # Synchronization of BatchNorm's buffer (running_mean
        # and running_var) is not supported in the DDP of pytorch,
        # which may cause the inconsistent performance of models in
        # different ranks, so we broadcast BatchNorm's buffers
        # of rank 0 to other ranks to avoid this.
        if self.broadcast_bn_buffer:
            model = runner.model
            for name, module in model.named_modules():
                if isinstance(module,
                              _BatchNorm) and module.track_running_stats:
                    dist.broadcast(module.running_var, 0)
                    dist.broadcast(module.running_mean, 0)

        if not self.evaluation_flag(runner):
            return

        from mmdet.apis import multi_gpu_test
        tmpdir = self.tmpdir
        if tmpdir is None:
            tmpdir = osp.join(runner.work_dir, '.eval_hook')
        results = multi_gpu_test(runner.model,
                                 self.dataloader,
                                 tmpdir=tmpdir,
                                 gpu_collect=self.gpu_collect)
        if runner.rank == 0:
            print('\n')
            key_score = self.evaluate(runner, results)
            if self.save_best:
                best_score = runner.meta['hook_msgs'].get(
                    'best_score', self.init_value_map[self.rule])
                if self.compare_func(key_score, best_score):
                    best_score = key_score
                    runner.meta['hook_msgs']['best_score'] = best_score
                    last_ckpt = runner.meta['hook_msgs']['last_ckpt']
                    runner.meta['hook_msgs']['best_ckpt'] = last_ckpt
                    mmcv.symlink(
                        last_ckpt,
                        osp.join(runner.work_dir,
                                 f'best_{self.key_indicator}.pth'))
                    self.logger.info(
                        f'Now best checkpoint is {last_ckpt}.'
                        f'Best {self.key_indicator} is {best_score:0.4f}')
예제 #7
0
    def after_train_iter(self, runner):
        if self.by_epoch or not self.every_n_iters(runner, self.interval):
            return

        if self.broadcast_bn_buffer:
            self._broadcast_bn_buffer(runner)

        from mmdet.apis import multi_gpu_test
        tmpdir = self.tmpdir
        if tmpdir is None:
            tmpdir = osp.join(runner.work_dir, '.eval_hook')
        results = multi_gpu_test(runner.model,
                                 self.dataloader,
                                 tmpdir=tmpdir,
                                 gpu_collect=self.gpu_collect)
        if runner.rank == 0:
            print('\n')
            key_score = self.evaluate(runner, results)
            if self.save_best:
                self.save_best_checkpoint(runner, key_score)
예제 #8
0
    def _do_evaluate(self, runner):
        """perform evaluation and save ckpt."""
        # Synchronization of BatchNorm's buffer (running_mean
        # and running_var) is not supported in the DDP of pytorch,
        # which may cause the inconsistent performance of models in
        # different ranks, so we broadcast BatchNorm's buffers
        # of rank 0 to other ranks to avoid this.
        if self.broadcast_bn_buffer:
            model = runner.model
            for name, module in model.named_modules():
                if isinstance(module,
                              _BatchNorm) and module.track_running_stats:
                    dist.broadcast(module.running_var, 0)
                    dist.broadcast(module.running_mean, 0)

        if not self._should_evaluate(runner):
            return

        tmpdir = self.tmpdir
        if tmpdir is None:
            tmpdir = osp.join(runner.work_dir, '.eval_hook')

        from mmdet.apis import multi_gpu_test

        # Changed results to self.results so that MMDetWandbHook can access
        # the evaluation results and log them to wandb.
        results = multi_gpu_test(runner.model,
                                 self.dataloader,
                                 tmpdir=tmpdir,
                                 gpu_collect=self.gpu_collect)
        self.latest_results = results
        if runner.rank == 0:
            print('\n')
            runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
            key_score = self.evaluate(runner, results)

            # the key_score may be `None` so it needs to skip
            # the action to save the best checkpoint
            if self.save_best and key_score:
                self._save_ckpt(runner, key_score)
예제 #9
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if cfg.get('USE_MMDET', False):
        from mmdet.apis import multi_gpu_test, single_gpu_test
        from mmdet.datasets import build_dataloader
        from mmdet.models import build_detector as build_model
        if 'detector' in cfg.model:
            cfg.model = cfg.model.detector
    elif cfg.get('TRAIN_REID', False):
        from mmdet.apis import multi_gpu_test, single_gpu_test
        from mmdet.datasets import build_dataloader
        from mmtrack.models import build_reid as build_model
        if 'reid' in cfg.model:
            cfg.model = cfg.model.reid
    else:
        from mmtrack.apis import multi_gpu_test, single_gpu_test
        from mmtrack.datasets import build_dataloader
        from mmtrack.models import build_model
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # cfg.model.pretrains = None
    if hasattr(cfg.model, 'detector'):
        cfg.model.detector.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    if cfg.get('test_cfg', False):
        model = build_model(cfg.model,
                            train_cfg=cfg.train_cfg,
                            test_cfg=cfg.test_cfg)
    else:
        model = build_model(cfg.model)
    # We need call `init_weights()` to load pretained weights in MOT task.
    model.init_weights()
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    if args.checkpoint is not None:
        checkpoint = load_checkpoint(model,
                                     args.checkpoint,
                                     map_location='cpu')
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
    if not hasattr(model, 'CLASSES'):
        model.CLASSES = dataset.CLASSES

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model,
                                  data_loader,
                                  args.show,
                                  args.show_dir,
                                  show_score_thr=args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            eval_hook_args = [
                'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
                'rule', 'by_epoch'
            ]
            for key in eval_hook_args:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            print(dataset.evaluate(outputs, **eval_kwargs))
def main():
    args = parse_args()

    assert args.out or args.show or args.show_dir, \
        ('Please specify at least one operation (save or show the results) '
         'with the argument "--out", "--show" or "show-dir"')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True
    if args.workers == 0:
        args.workers = cfg.data.workers_per_gpu

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # set random seeds
    if args.seed is not None:
        set_random_seed(args.seed)

    if 'all' in args.corruptions:
        corruptions = [
            'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
            'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
            'brightness', 'contrast', 'elastic_transform', 'pixelate',
            'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter',
            'saturate'
        ]
    elif 'benchmark' in args.corruptions:
        corruptions = [
            'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
            'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
            'brightness', 'contrast', 'elastic_transform', 'pixelate',
            'jpeg_compression'
        ]
    elif 'noise' in args.corruptions:
        corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise']
    elif 'blur' in args.corruptions:
        corruptions = [
            'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur'
        ]
    elif 'weather' in args.corruptions:
        corruptions = ['snow', 'frost', 'fog', 'brightness']
    elif 'digital' in args.corruptions:
        corruptions = [
            'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression'
        ]
    elif 'holdout' in args.corruptions:
        corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate']
    elif 'None' in args.corruptions:
        corruptions = ['None']
        args.severities = [0]
    else:
        corruptions = args.corruptions

    rank, _ = get_dist_info()
    aggregated_results = {}
    for corr_i, corruption in enumerate(corruptions):
        aggregated_results[corruption] = {}
        for sev_i, corruption_severity in enumerate(args.severities):
            # evaluate severity 0 (= no corruption) only once
            if corr_i > 0 and corruption_severity == 0:
                aggregated_results[corruption][0] = \
                    aggregated_results[corruptions[0]][0]
                continue

            test_data_cfg = copy.deepcopy(cfg.data.test)
            # assign corruption and severity
            if corruption_severity > 0:
                corruption_trans = dict(type='Corrupt',
                                        corruption=corruption,
                                        severity=corruption_severity)
                # TODO: hard coded "1", we assume that the first step is
                # loading images, which needs to be fixed in the future
                test_data_cfg['pipeline'].insert(1, corruption_trans)

            # print info
            print(f'\nTesting {corruption} at severity {corruption_severity}')

            # build the dataloader
            # TODO: support multiple images per gpu
            #       (only minor changes are needed)
            dataset = build_dataset(test_data_cfg)
            data_loader = build_dataloader(dataset,
                                           samples_per_gpu=1,
                                           workers_per_gpu=args.workers,
                                           dist=distributed,
                                           shuffle=False)

            # build the model and load checkpoint
            cfg.model.train_cfg = None
            model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
            fp16_cfg = cfg.get('fp16', None)
            if fp16_cfg is not None:
                wrap_fp16_model(model)
            checkpoint = load_checkpoint(model,
                                         args.checkpoint,
                                         map_location='cpu')
            # old versions did not save class info in checkpoints,
            # this walkaround is for backward compatibility
            if 'CLASSES' in checkpoint['meta']:
                model.CLASSES = checkpoint['meta']['CLASSES']
            else:
                model.CLASSES = dataset.CLASSES

            if not distributed:
                model = MMDataParallel(model, device_ids=[0])
                show_dir = args.show_dir
                if show_dir is not None:
                    show_dir = osp.join(show_dir, corruption)
                    show_dir = osp.join(show_dir, str(corruption_severity))
                    if not osp.exists(show_dir):
                        osp.makedirs(show_dir)
                outputs = single_gpu_test(model, data_loader, args.show,
                                          show_dir, args.show_score_thr)
            else:
                model = MMDistributedDataParallel(
                    model.cuda(),
                    device_ids=[torch.cuda.current_device()],
                    broadcast_buffers=False)
                outputs = multi_gpu_test(model, data_loader, args.tmpdir)

            if args.out and rank == 0:
                eval_results_filename = (osp.splitext(args.out)[0] +
                                         '_results' +
                                         osp.splitext(args.out)[1])
                mmcv.dump(outputs, args.out)
                eval_types = args.eval
                if cfg.dataset_type == 'VOCDataset':
                    if eval_types:
                        for eval_type in eval_types:
                            if eval_type == 'bbox':
                                test_dataset = mmcv.runner.obj_from_dict(
                                    cfg.data.test, datasets)
                                logger = 'print' if args.summaries else None
                                mean_ap, eval_results = \
                                    voc_eval_with_return(
                                        args.out, test_dataset,
                                        args.iou_thr, logger)
                                aggregated_results[corruption][
                                    corruption_severity] = eval_results
                            else:
                                print('\nOnly "bbox" evaluation \
                                is supported for pascal voc')
                else:
                    if eval_types:
                        print(f'Starting evaluate {" and ".join(eval_types)}')
                        if eval_types == ['proposal_fast']:
                            result_file = args.out
                        else:
                            if not isinstance(outputs[0], dict):
                                result_files = dataset.results2json(
                                    outputs, args.out)
                            else:
                                for name in outputs[0]:
                                    print(f'\nEvaluating {name}')
                                    outputs_ = [out[name] for out in outputs]
                                    result_file = args.out
                                    + f'.{name}'
                                    result_files = dataset.results2json(
                                        outputs_, result_file)
                        eval_results = coco_eval_with_return(
                            result_files, eval_types, dataset.coco)
                        aggregated_results[corruption][
                            corruption_severity] = eval_results
                    else:
                        print('\nNo task was selected for evaluation;'
                              '\nUse --eval to select a task')

                # save results after each evaluation
                mmcv.dump(aggregated_results, eval_results_filename)

    if rank == 0:
        # print final results
        print('\nAggregated results:')
        prints = args.final_prints
        aggregate = args.final_prints_aggregate

        if cfg.dataset_type == 'VOCDataset':
            get_results(eval_results_filename,
                        dataset='voc',
                        prints=prints,
                        aggregate=aggregate)
        else:
            get_results(eval_results_filename,
                        dataset='coco',
                        prints=prints,
                        aggregate=aggregate)
예제 #11
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results) with the argument "--out", "--eval", "--format_only" '
         'or "--show"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    # 计算需要剪枝的变量个数total
    model.cuda()
    total = 0
    for m in model.backbone.modules():
        if isinstance(m, nn.BatchNorm2d):
            total += m.weight.data.shape[0]

    # 确定剪枝的全局阈值
    bn = torch.zeros(total)
    index = 0
    for m in model.backbone.modules():
        if isinstance(m, nn.BatchNorm2d):
            size = m.weight.data.shape[0]
            bn[index:(index + size)] = m.weight.data.abs().clone()
            index += size

    # 按照权值大小排序
    y, i = torch.sort(bn)
    thre_index = int(total * args.percent)

    # 确定要剪枝的阈值
    thre = y[thre_index].cuda()

    # ********************************预剪枝*********************************#
    pruned = 0
    cfg_ori = []
    cfg = []
    cfg_mask = []
    model_backbone = list(model.backbone.modules())
    for layer_id, m in enumerate(model_backbone):
        if isinstance(m, nn.BatchNorm2d):
            weight_copy = m.weight.data.abs().clone()
            if isinstance(model_backbone[layer_id + 1], channel_selection):
                mask = torch.ones(weight_copy.shape[0]).cuda()
            else:
                # 要保留的通道标记Mask图
                mask = weight_copy.gt(thre).float().cuda()
                # 要保留的通道标记Mask图
                pruned = pruned + mask.shape[0] - torch.sum(mask)
            # m.weight.data.mul_(mask)
            # m.bias.data.mul_(mask)
            cfg.append(int(torch.sum(mask)))
            cfg_ori.append(mask.shape[0])
            cfg_mask.append(mask.clone())
            print(
                'layer index: {:d} \t total channel: {:d} \t remaining channel: {:d}'
                .format(layer_id, mask.shape[0], int(torch.sum(mask))))

    pruned_ratio = pruned / total

    print("剪枝比例:")
    print(pruned_ratio)

    print('Pre-processing Successful!')

    print('cfg:')
    print(cfg)

    # ******************************* 正式剪枝 ********************************#
    # 每个阶的最一层不剪枝
    newmodel = copy.deepcopy(model)
    newmodel.backbone = PResNet(depth=101,
                                num_stages=4,
                                out_indices=(0, 1, 2, 3),
                                frozen_stages=1,
                                norm_cfg=dict(type='BN', requires_grad=True),
                                style='pytorch',
                                cfg=cfg)
    newmodel.cuda()

    # print(newmodel.backbone)

    num_parameters = sum([param.nelement() for param in newmodel.parameters()])
    savepath = os.path.join(args.save_path, "prune.txt")
    # with open(savepath, "w") as fp:
    #     fp.write("Configuration: \n" + str(cfg) + "\n")
    #     fp.write("Number of parameters: \n" + str(num_parameters) + "\n")
    #     fp.write("Test accuracy: \n" + str(acc))

    old_modules = list(model.backbone.modules())
    new_modules = list(newmodel.backbone.modules())
    layer_id_in_cfg = 0
    start_mask = torch.ones(3)
    end_mask = cfg_mask[layer_id_in_cfg]
    conv_count = 0
    # downsample_conv_list = [17, 48, 88, 299]
    downsample_conv_list = [17, 49, 90, 302]

    for layer_id, m0 in enumerate(old_modules):
        # m0 = old_modules[layer_id]
        # print('m0:')
        # print(m0)
        m1 = new_modules[layer_id]
        # print('m1:')
        # print(m1)
        if isinstance(m0, nn.BatchNorm2d):
            idx1 = np.squeeze(np.argwhere(np.asarray(end_mask.cpu().numpy())))
            if idx1.size == 1:
                idx1 = np.resize(idx1, (1, ))

            if isinstance(old_modules[layer_id + 1], channel_selection):
                # If the next layer is the channel selection layer, then the current batchnorm 2d layer won't be pruned.
                m1.weight.data = m0.weight.data.clone()
                m1.bias.data = m0.bias.data.clone()
                m1.running_mean = m0.running_mean.clone()
                m1.running_var = m0.running_var.clone()

                # We need to set the channel selection layer.
                m2 = new_modules[layer_id + 1]
                m2.indexes.data.zero_()
                m2.indexes.data[idx1.tolist()] = 1.0

                layer_id_in_cfg += 1
                start_mask = end_mask.clone()
                if layer_id_in_cfg < len(cfg_mask):
                    end_mask = cfg_mask[layer_id_in_cfg]
            else:
                m1.weight.data = m0.weight.data[idx1.tolist()].clone()
                m1.bias.data = m0.bias.data[idx1.tolist()].clone()
                m1.running_mean = m0.running_mean[idx1.tolist()].clone()
                m1.running_var = m0.running_var[idx1.tolist()].clone()
                layer_id_in_cfg += 1
                start_mask = end_mask.clone()
                if layer_id_in_cfg < len(
                        cfg_mask):  # do not change in Final FC
                    end_mask = cfg_mask[layer_id_in_cfg]
        elif isinstance(m0, nn.Conv2d):
            if conv_count == 0:
                m1.weight.data = m0.weight.data.clone()
                conv_count += 1
                continue
            if layer_id in downsample_conv_list:
                # We need to consider the case where there are downsampling convolutions.
                # For these convolutions, we just copy the weights.
                m1.weight.data = m0.weight.data.clone()
                continue
            if isinstance(old_modules[layer_id + 1], nn.BatchNorm2d):
                # This convers the convolutions in the residual block.
                # The convolutions are either after the channel selection layer or after the batch normalization layer.
                idx0 = np.squeeze(
                    np.argwhere(np.asarray(start_mask.cpu().numpy())))
                idx1 = np.squeeze(
                    np.argwhere(np.asarray(end_mask.cpu().numpy())))
                print('In shape: {:d}, Out shape {:d}.'.format(
                    idx0.size, idx1.size))
                if idx0.size == 1:
                    idx0 = np.resize(idx0, (1, ))
                if idx1.size == 1:
                    idx1 = np.resize(idx1, (1, ))
                w1 = m0.weight.data[:, idx0.tolist(), :, :].clone()

                # If the current convolution is not the last convolution in the residual block, then we can change the
                # number of output channels. Currently we use `conv_count` to detect whether it is such convolution.
                # if conv_count % 3 != 0:
                w1 = w1[idx1.tolist(), :, :, :].clone()
                m1.weight.data = w1.clone()
                conv_count += 1
                continue

        elif isinstance(m0, nn.Linear):
            idx0 = np.squeeze(np.argwhere(np.asarray(
                start_mask.cpu().numpy())))
            if idx0.size == 1:
                idx0 = np.resize(idx0, (1, ))

            m1.weight.data = m0.weight.data[:, idx0].clone()
            m1.bias.data = m0.bias.data.clone()

    # torch.save({'cfg': cfg, 'state_dict': newmodel.state_dict()}, os.path.join(args.save_path, 'pruned.pth.tar'))
    # torch.save(newmodel.state_dict(), os.path.join(args.save_path, 'pruned.pth'))
    print(newmodel)
    torch.save(newmodel, os.path.join(args.save_path, 'pruned.pth'))

    # print(newmodel)

    if not distributed:
        newmodel = MMDataParallel(newmodel, device_ids=[0])
        newmodel = single_gpu_test(newmodel, data_loader, args.show)
    else:
        newmodel = MMDistributedDataParallel(
            newmodel.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(newmodel, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print('\nwriting results to {}'.format(args.out))
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.options is None else args.options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            dataset.evaluate(outputs, args.eval, **kwargs)
예제 #12
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    # config 파일 읽기
    cfg = Config.fromfile(args.config)
    # 코드 돌릴 때 --cfg-options 설정하면 기존 config 파일에 내용 합치는 코드
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    if cfg.model.get('neck'):
        if isinstance(cfg.model.neck, list):
            for neck_cfg in cfg.model.neck:
                if neck_cfg.get('rfp_backbone'):
                    if neck_cfg.rfp_backbone.get('pretrained'):
                        neck_cfg.rfp_backbone.pretrained = None
        elif cfg.model.neck.get('rfp_backbone'):
            if cfg.model.neck.rfp_backbone.get('pretrained'):
                cfg.model.neck.rfp_backbone.pretrained = None

    # in case the test dataset is concatenated
    if isinstance(cfg.data.test, dict):  # cfg.data.test가 dict 타입이면 실행
        cfg.data.test.test_mode = True  # coco_detection.py 랑 비슷한 form에 test_mode를 설정해줄 수 있나봄
    elif isinstance(cfg.data.test, list):  # cfg.data.test가 list 타입이면 실행
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
    if samples_per_gpu > 1:
        # Replace 'ImageToTensor' to 'DefaultFormatBundle'
        cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)

    ########################################################################################
    """ 여기에서 cctv 영상을 이미지로 변환해서 폴더에 넣고 cfg.data.test 부분에 폴더 경로를 추가"""
    video = mmcv.VideoReader("/home/minjae/mjseong/mmdetection/data/test.avi")
    print(len(video))  # get the total frame number
    print(video.width, video.height, video.resolution, video.fps)
    video.cvt2frames(
        "/home/minjae/mjseong/mmdetection/data/KRRI_Video_cvt2frames",
        start=0,
        max_num=10000)
    cfg.data.test.img_prefix = "data_root" + "/home/minjae/mjseong/mmdetection/data/KRRI_Video_cvt2frames/"
    # cfg.data.test.ann_file =
    ########################################################################################

    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in ['interval', 'tmpdir', 'start', 'gpu_collect']:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            print(dataset.evaluate(outputs, **eval_kwargs))

    ########################################################################################
    """여기에서 box쳐진 test 결과의 이미지를 다시 video로 변환 시켜주기"""
    mmcv.frames2video(
        "/home/minjae/mjseong/mmdetection/data/KRRI_Video_cvt2frames",
        "/home/minjae/mjseong/mmdetection/data/test.avi")
예제 #13
0
파일: test.py 프로젝트: dqawami/mmdetection
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
           or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.update_config:
        cfg.merge_from_dict(args.update_config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)

    # nncf model wrapper
    if cfg.get('nncf_config'):
        check_nncf_is_enabled()
        if not is_checkpoint_nncf(args.checkpoint):
            raise RuntimeError(
                'Trying to make testing with NNCF compression a model snapshot that was NOT trained with NNCF'
            )
        cfg.load_from = args.checkpoint
        cfg.resume_from = None
        if torch.cuda.is_available():
            model = model.cuda()
        _, model = wrap_nncf_model(model, cfg, None, get_fake_input)
        checkpoint = torch.load(args.checkpoint, map_location=None)
    else:
        fp16_cfg = cfg.get('fp16', None)
        if fp16_cfg is not None:
            wrap_fp16_model(model)
        checkpoint = load_checkpoint(model,
                                     args.checkpoint,
                                     map_location='cpu')
        if args.fuse_conv_bn:  # TODO: FIXME: should it be inside this 'else' branch???
            from tools.fuse_conv_bn import fuse_module
            model = fuse_module(model)

    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if torch.cuda.is_available():
        if not distributed:
            model = MMDataParallel(model, device_ids=[0])
            outputs = single_gpu_test(model, data_loader, args.show,
                                      args.show_dir, args.show_score_thr)
        else:
            model = MMDistributedDataParallel(
                model.cuda(),
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False)
            outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                     args.gpu_collect)
    else:
        model = MMDataCPU(model)
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  args.show_score_thr)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = cfg.get('evaluation', {})
        kwargs.pop('interval', None)
        kwargs.pop('gpu_collect', None)
        kwargs.update({} if args.options is None else args.options)
        kwargs['metric'] = args.eval
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            dataset.evaluate(outputs, **kwargs)
예제 #14
0
def main():
    args = parse_args()
    print('#'*100)
    print(args)
    print('#'*100)

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    if cfg.model.get('neck'):
        if isinstance(cfg.model.neck, list):
            for neck_cfg in cfg.model.neck:
                if neck_cfg.get('rfp_backbone'):
                    if neck_cfg.rfp_backbone.get('pretrained'):
                        neck_cfg.rfp_backbone.pretrained = None
        elif cfg.model.neck.get('rfp_backbone'):
            if cfg.model.neck.rfp_backbone.get('pretrained'):
                cfg.model.neck.rfp_backbone.pretrained = None

    # in case the test dataset is concatenated
    if isinstance(cfg.data.test, dict):
        cfg.data.test.test_mode = True
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    ######################################################################
    print(cfg.pretty_text)
    #######################################################################

    # build the dataloader
    samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
    if samples_per_gpu > 1:
        # Replace 'ImageToTensor' to 'DefaultFormatBundle'
        cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=samples_per_gpu,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=distributed,
        shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES
    ############################################################
    if args.eval_options \
            and 'load_results' in args.eval_options.keys() \
            and args.eval_options['load_results']:
        import pickle as pkl
        with open(str(args.out), 'rb') as f:
            outputs = pkl.load(f)
    else:
        if not distributed:
            model = MMDataParallel(model, device_ids=[0])
            outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                      args.show_score_thr)
        else:
            model = MMDistributedDataParallel(
                model.cuda(),
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False)
            outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                     args.gpu_collect)
        ############################################################

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in ['interval', 'tmpdir', 'start', 'gpu_collect']:
                eval_kwargs.pop(key, None)
            ######################################
            # from mmdet.utils import collect_env, get_root_logger
            # import os.path as osp
            # import time
            # timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
            # log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
            # logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
            # eval_kwargs['logger'] = True


            ###################   很多信息从kwargs,也就是eval_options中得到#################
            work_dir = os.path.split(str(args.out))[0]
            if args.eval_options and 'eval_results_path' in args.eval_options.keys():
                eval_results_path = os.path.split(args.eval_options['eval_results_path'])[1]
                eval_results_path = os.path.join(work_dir, eval_results_path)

            else:
                eval_results_path = os.path.join(work_dir, 'eval_results.txt')
            print('#'*80, '\n', 'EVALUATE ReSULTS PATH: %s\n' % eval_results_path, '#'*80, '\n')

            kwargs = {}
            # eval_kwargs['classwise'] = True
            # eval_kwargs['proposal_nums'] = (100, 300, 1000)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))

            s = str(dataset.evaluate(outputs, **eval_kwargs))

            with open(eval_results_path, 'wt+') as f:
                f.write(str(s))
            print(s)
예제 #15
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    cfg.model.pretrained = None
    # in case the test dataset is concatenated
    samples_per_gpu = 1
    if isinstance(cfg.data.test, dict):
        cfg.data.test.test_mode = True
        samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
        if samples_per_gpu > 1:
            # Replace 'ImageToTensor' to 'DefaultFormatBundle'
            cfg.data.test.pipeline = replace_ImageToTensor(
                cfg.data.test.pipeline)
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True
        samples_per_gpu = max(
            [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test])
        if samples_per_gpu > 1:
            for ds_cfg in cfg.data.test:
                ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # set random seeds
    if args.seed is not None:
        set_random_seed(args.seed, deterministic=args.deterministic)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint.get('meta', {}):
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                    'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
                    'rule'
            ]:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            print(dataset.evaluate(outputs, **eval_kwargs))
예제 #16
0
def main():
    args = parse_args()

    # assert args.out or args.eval or args.format_only or args.show \
    #     or args.show_dir, \
    #     ('Please specify at least one operation (save/eval/format/show the '
    #      'results / save the results) with the argument "--out", "--eval"'
    #      ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # test data_loader
    # for i, item in enumerate(data_loader):
    #     print(item)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint_folder = args.checkpoint_folder
    check_list = os.listdir(checkpoint_folder)
    check_list = [i for i in check_list if i.split('.')[1] == 'pth']
    pickle_dir = 'pickle_dir/' + checkpoint_folder
    if os.path.exists(pickle_dir) == False:
        os.makedirs(pickle_dir)

    for checkpt in check_list:
        checkpt_name = checkpt.split('.')[0]
        checkpt_full_path = os.path.join(checkpoint_folder, checkpt)
        checkpoint = load_checkpoint(model,
                                     checkpt_full_path,
                                     map_location='cpu')
        if args.fuse_conv_bn:
            model = fuse_module(model)
        # old versions did not save class info in checkpoints, this walkaround is
        # for backward compatibility
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = dataset.CLASSES

        if not distributed:
            model = MMDataParallel(model, device_ids=[0])
            outputs = single_gpu_test(model, data_loader, args.show,
                                      args.show_dir, args.show_score_thr)
        else:
            model = MMDistributedDataParallel(
                model.cuda(),
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False)
            outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                     args.gpu_collect)

        rank, _ = get_dist_info()

        if rank == 0:
            if args.checkpoint_folder:
                print(f'\nwriting results to {checkpt}')
                pickle_name = pickle_dir + '/' + checkpt_name + '.pkl'
                mmcv.dump(outputs, pickle_name)
            kwargs = {} if args.options is None else args.options
            if args.format_only:
                dataset.format_results(outputs, **kwargs)
            if args.eval:
                # dataset.evaluate(outputs, args.eval, **kwargs)
                polyp_evaluate(outputs)
예제 #17
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    if cfg.model.get('neck'):
        if isinstance(cfg.model.neck, list):
            for neck_cfg in cfg.model.neck:
                if neck_cfg.get('rfp_backbone'):
                    if neck_cfg.rfp_backbone.get('pretrained'):
                        neck_cfg.rfp_backbone.pretrained = None
        elif cfg.model.neck.get('rfp_backbone'):
            if cfg.model.neck.rfp_backbone.get('pretrained'):
                cfg.model.neck.rfp_backbone.pretrained = None

    # in case the test dataset is concatenated
    if isinstance(cfg.data.test, dict):
        cfg.data.test.test_mode = True
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
    if samples_per_gpu > 1:
        # Replace 'ImageToTensor' to 'DefaultFormatBundle'
        cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
    dataset = build_dataset(cfg.data.test)
    #dataset.load_query()
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)

        ############## evaluate fairmot results#################
        #fairmot_file = '/raid/yy1/data/MOT/MOT17/images/results/MOT17_val_jde_half_dla34_det/det_results.pkl'
        #with open(fairmot_file, 'rb') as fid:
        #    outputs = pickle.load(fid)

        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in ['interval', 'tmpdir', 'start', 'gpu_collect']:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            print(dataset.evaluate(outputs, **eval_kwargs))

            for thresh in [0.1, 0.2, 0.3, 0.4, 0.5]:
                num_dets = 0
                tmp_outputs = list()
                for to in outputs:
                    for j in range(to[0].shape[0]):
                        if to[0][j, 4] < thresh:
                            break
                    tmp_outputs.append([to[0][:j]])
                    num_dets += j
                print('thresh {:f}, num of dets {:d}'.format(thresh, num_dets))
                print(dataset.evaluate(tmp_outputs, **eval_kwargs))
예제 #18
0
파일: test.py 프로젝트: XDong18/mmdetection
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                    'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
                    'rule'
예제 #19
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results) with the argument "--out", "--eval", "--format_only" '
         'or "--show"')

    # if args.eval and args.format_only:
    #     raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir with timestamp tag
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    cfg.work_dir = osp.dirname(args.checkpoint)
    if args.out is None:
        args.out = osp.join(
            cfg.work_dir,
            '{}_{}'.format(timestamp,
                           osp.basename(args.checkpoint).replace('pth',
                                                                 'pkl')))

    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    log_file = osp.join(cfg.work_dir, '{}_test.log'.format(timestamp))
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # log some basic info
    logger.info('Command-line argument:\n{}'.format(' '.join(sys.argv[1:])))
    logger.info('Distributed training: {}'.format(distributed))
    logger.info('MMDetection Version: {}'.format(__version__))
    logger.info('Config:\n{}'.format(cfg.text))

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES
    if args.use_cache and osp.exists(args.out):
        print('\nreuse results from {}'.format(args.out))
        outputs = mmcv.load(args.out)
    else:
        if not distributed:
            model = MMDataParallel(model, device_ids=[0])
            outputs = single_gpu_test(model, data_loader, args.show)
        else:
            model = MMDistributedDataParallel(
                model.cuda(),
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False)
            outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                     args.gpu_collect)
        print('\nwriting results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)

    rank, _ = get_dist_info()
    if rank == 0:
        kwargs = {} if args.options is None else args.options
        if args.format_only:
            save_dir = osp.join(cfg.work_dir,
                                osp.basename(args.out).split('.')[0] + '_out')
            print('\nsaving results to {}'.format(save_dir))
            kwargs['data_loader'] = data_loader
            kwargs['save_dir'] = save_dir
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            kwargs['logger'] = logger
            dataset.evaluate(outputs, args.eval, **kwargs)
예제 #20
0
def main():
    args = parse_args()

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True
    if args.ann_file is not None:
        cfg.data.test.ann_file = args.ann_file
    if args.img_prefix is not None:
        cfg.data.test.img_prefix = args.img_prefix

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = get_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    models = []
    print(f"checkpoints: {args.checkpoint}")
    for checkpoint in args.checkpoint:
        model = build_detector(cfg.model,
                               train_cfg=None,
                               test_cfg=cfg.test_cfg)
        load_checkpoint(model, checkpoint, map_location='cpu')
        models.append(model)
    model = EnsembleHTC(models)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show)
    else:
        model = MMDistributedDataParallel(model.cuda())
        outputs = multi_gpu_test(model, data_loader, args.tmpdir)

    rank, _ = get_dist_info()
    if args.out and rank == 0:
        print('\nwriting results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)
        eval_types = args.eval
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = args.out
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_file = args.out + '.json'
                    results2json(dataset, outputs, result_file)
                    coco_eval(result_file, eval_types, dataset.coco)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = args.out + '.{}.json'.format(name)
                        results2json(dataset, outputs_, result_file)
                        coco_eval(result_file, eval_types, dataset.coco)
예제 #21
0
def main():
    args = parse_args()
    # touch the output json if not exist
    with open(args.json_out, 'a+'):
        pass
    # init distributed env first, since logger depends on the dist
    # info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, backend='nccl')
    rank, world_size = get_dist_info()

    logger = get_logger('root')

    # read info of checkpoints and config
    result_dict = dict()
    for model_family_dir in os.listdir(args.model_dir):
        for model in os.listdir(os.path.join(args.model_dir,
                                             model_family_dir)):
            # cpt: rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth
            # cfg: rpn_r50_fpn_1x_coco.py
            cfg = model.split('.')[0][:-18] + '.py'
            cfg_path = os.path.join('configs', model_family_dir, cfg)
            assert os.path.isfile(
                cfg_path), f'{cfg_path} is not valid config path'
            cpt_path = os.path.join(args.model_dir, model_family_dir, model)
            result_dict[cfg_path] = cpt_path
            assert cfg_path in modelzoo_dict, f'please fill the ' \
                                              f'performance of cfg: {cfg_path}'
    cfg = check_finish(result_dict, args.json_out)
    cpt = result_dict[cfg]
    try:
        cfg_name = cfg
        logger.info(f'evaluate {cfg}')
        record = dict(cfg=cfg, cpt=cpt)
        cfg = Config.fromfile(cfg)
        # cfg.data.test.ann_file = 'data/val_0_10.json'
        # set cudnn_benchmark
        if cfg.get('cudnn_benchmark', False):
            torch.backends.cudnn.benchmark = True
        cfg.model.pretrained = None
        if cfg.model.get('neck'):
            if isinstance(cfg.model.neck, list):
                for neck_cfg in cfg.model.neck:
                    if neck_cfg.get('rfp_backbone'):
                        if neck_cfg.rfp_backbone.get('pretrained'):
                            neck_cfg.rfp_backbone.pretrained = None
            elif cfg.model.neck.get('rfp_backbone'):
                if cfg.model.neck.rfp_backbone.get('pretrained'):
                    cfg.model.neck.rfp_backbone.pretrained = None

        # in case the test dataset is concatenated
        if isinstance(cfg.data.test, dict):
            cfg.data.test.test_mode = True
        elif isinstance(cfg.data.test, list):
            for ds_cfg in cfg.data.test:
                ds_cfg.test_mode = True

        # build the dataloader
        samples_per_gpu = 2  # hack test with 2 image per gpu
        if samples_per_gpu > 1:
            # Replace 'ImageToTensor' to 'DefaultFormatBundle'
            cfg.data.test.pipeline = replace_ImageToTensor(
                cfg.data.test.pipeline)
        dataset = build_dataset(cfg.data.test)
        data_loader = build_dataloader(
            dataset,
            samples_per_gpu=samples_per_gpu,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=distributed,
            shuffle=False)

        # build the model and load checkpoint
        model = build_detector(cfg.model,
                               train_cfg=None,
                               test_cfg=cfg.test_cfg)
        fp16_cfg = cfg.get('fp16', None)
        if fp16_cfg is not None:
            wrap_fp16_model(model)

        checkpoint = load_checkpoint(model, cpt, map_location='cpu')
        # old versions did not save class info in checkpoints,
        # this walkaround is for backward compatibility
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = dataset.CLASSES

        if not distributed:
            model = MMDataParallel(model, device_ids=[0])
            outputs = single_gpu_test(model, data_loader)
        else:
            model = MMDistributedDataParallel(
                model.cuda(),
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False)
            outputs = multi_gpu_test(model, data_loader, 'tmp')
        if rank == 0:
            ref_mAP_dict = modelzoo_dict[cfg_name]
            metrics = list(ref_mAP_dict.keys())
            metrics = [
                m if m != 'AR@1000' else 'proposal_fast' for m in metrics
            ]
            eval_results = dataset.evaluate(outputs, metrics)
            print(eval_results)
            for metric in metrics:
                if metric == 'proposal_fast':
                    ref_metric = modelzoo_dict[cfg_name]['AR@1000']
                    eval_metric = eval_results['AR@1000']
                else:
                    ref_metric = modelzoo_dict[cfg_name][metric]
                    eval_metric = eval_results[f'{metric}_mAP']
                if abs(ref_metric - eval_metric) > 0.003:
                    record['is_normal'] = False
            dump_dict(record, args.json_out)
            check_finish(result_dict, args.json_out)
    except Exception as e:
        logger.error(f'rank: {rank} test fail with error: {e}')
        record['terminate'] = True
        dump_dict(record, args.json_out)
        check_finish(result_dict, args.json_out)
        # hack there to throw some error to prevent hang out
        subprocess.call('xxx')
예제 #22
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    if cfg.model.get('neck'):
        if isinstance(cfg.model.neck, list):
            for neck_cfg in cfg.model.neck:
                if neck_cfg.get('rfp_backbone'):
                    if neck_cfg.rfp_backbone.get('pretrained'):
                        neck_cfg.rfp_backbone.pretrained = None
        elif cfg.model.neck.get('rfp_backbone'):
            if cfg.model.neck.rfp_backbone.get('pretrained'):
                cfg.model.neck.rfp_backbone.pretrained = None

    # in case the test dataset is concatenated
    if isinstance(cfg.data.test, dict):
        cfg.data.test.test_mode = True
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
    if samples_per_gpu > 1:
        # Replace 'ImageToTensor' to 'DefaultFormatBundle'
        cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[1])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)
예제 #23
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)

    # update data root according to MMDET_DATASETS
    update_data_root(cfg)

    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # set multi-process settings
    setup_multi_processes(cfg)

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    if 'pretrained' in cfg.model:
        cfg.model.pretrained = None
    elif 'init_cfg' in cfg.model.backbone:
        cfg.model.backbone.init_cfg = None

    if cfg.model.get('neck'):
        if isinstance(cfg.model.neck, list):
            for neck_cfg in cfg.model.neck:
                if neck_cfg.get('rfp_backbone'):
                    if neck_cfg.rfp_backbone.get('pretrained'):
                        neck_cfg.rfp_backbone.pretrained = None
        elif cfg.model.neck.get('rfp_backbone'):
            if cfg.model.neck.rfp_backbone.get('pretrained'):
                cfg.model.neck.rfp_backbone.pretrained = None

    # in case the test dataset is concatenated
    samples_per_gpu = 1
    if isinstance(cfg.data.test, dict):
        cfg.data.test.test_mode = True
        samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
        if samples_per_gpu > 1:
            # Replace 'ImageToTensor' to 'DefaultFormatBundle'
            cfg.data.test.pipeline = replace_ImageToTensor(
                cfg.data.test.pipeline)
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True
        samples_per_gpu = max(
            [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test])
        if samples_per_gpu > 1:
            for ds_cfg in cfg.data.test:
                ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)

    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids[0:1]
        warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. '
                      'Because we only support single GPU mode in '
                      'non-distributed testing. Use the first GPU '
                      'in `gpu_ids` now.')
    else:
        cfg.gpu_ids = [args.gpu_id]

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    rank, _ = get_dist_info()
    # allows not to create
    if args.work_dir is not None and rank == 0:
        mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
        timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
        json_file = osp.join(args.work_dir, f'eval_{timestamp}.json')

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint.get('meta', {}):
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=cfg.gpu_ids)
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                    'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
                    'rule', 'dynamic_intervals'
            ]:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            metric = dataset.evaluate(outputs, **eval_kwargs)
            print(metric)
            metric_dict = dict(config=args.config, metric=metric)
            if args.work_dir is not None and rank == 0:
                mmcv.dump(metric_dict, json_file)
예제 #24
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_module(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
        model.CLASSES = dataset.CLASSES
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.options is None else args.options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            precision = dataset.evaluate(outputs, args.eval,
                                         **kwargs)['precision']
            for i, cl in enumerate(dataset.CLASSES):
                rec = np.arange(0.0, 1.01, 0.01)
                pre_5 = precision[0, :, i]
                pre_7 = precision[4, :, i]
                pre_9 = precision[8, :, i]

                plt.clf()
                plt.plot(rec, pre_5, 'm-', label='IoU=0.5')
                plt.plot(rec, pre_7, 'b-', label='IoU=0.7')
                plt.plot(rec, pre_9, 'c-', label='IoU=0.9')
                plt.xlim(0, 1.0)
                plt.ylim(0, 1.01)
                plt.title(f"precision-recall curve of {cl}")
                plt.grid(True)
                plt.xlabel("recall")
                plt.ylabel("precision")
                plt.legend(loc="lower left")

                name = os.path.join(os.path.dirname(args.out),
                                    f'pr_curve_{cl}.png')
                plt.savefig(name)
예제 #25
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results) with the argument "--out", "--eval", "--format_only" '
         'or "--show"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    #if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
    #    raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # set random seeds
    if args.seed is not None:
        set_random_seed(args.seed, deterministic=args.deterministic)

    # build the dataloader
    samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=samples_per_gpu,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_module(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    #pkl_saved_path = '/home/radmin/jk/code/seg/SelectiveSeg/work_dirs/20210322_pano_all_preds/results/output_pkl/results.pkl'
    #outputs = mmcv.load(pkl_saved_path)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out and args.need_pkl_res:
            pkl_res_path = os.path.join(args.out, 'output_pkl')
            mmcv.mkdir_or_exist(pkl_res_path)
            pkl_res_path = os.path.join(pkl_res_path, 'results.pkl')
            print(f'\nwriting results to {pkl_res_path}')
            mmcv.dump(outputs, pkl_res_path)

        if args.need_bin_res:
            import torch
            import numpy as np

            bin_res_path = os.path.join(args.out, 'pred_label')
            mmcv.mkdir_or_exist(bin_res_path)

            box_res_path = os.path.join(args.out, 'box_label')
            mmcv.mkdir_or_exist(box_res_path)

            for i, res in enumerate(outputs):
                sem_preds = res['sem_preds']
                if 'ins_preds' not in res:
                    ins_preds = torch.zeros_like(sem_preds)
                else:
                    ins_preds = res['ins_preds']
                preds = torch.stack([sem_preds, ins_preds], dim=-1)
                preds = preds.cpu().numpy()
                preds = np.array(preds, dtype=np.uint8)
                file_name = str(i).zfill(6)
                postfix = '.bin'
                preds.tofile(bin_res_path + '/' + file_name + postfix)

                if 'pts_bbox' in res:
                    bbox_preds = res['pts_bbox']
                    bbox_3d = bbox_preds['boxes_3d'].tensor
                    dim = bbox_3d.size(1)
                    if dim == 3:
                        pseudo_size = bbox_3d.new_ones((bbox_3d.size(0), 3))
                        pseudo_theta = bbox_3d.new_zeros((bbox_3d.size(0), 1))
                        bbox_3d = torch.cat(
                            [bbox_3d, pseudo_size, pseudo_theta], dim=1)
                    else:
                        # check here
                        bbox_3d = torch.cat([
                            bbox_preds['boxes_3d'].gravity_center,
                            bbox_preds['boxes_3d'].tensor[:, 3:]
                        ],
                                            dim=1)
                    temp_label = bbox_preds['labels_3d'].view(-1, 1)
                    temp_score = bbox_preds['scores_3d'].view(-1, 1)
                    temp_id = torch.zeros_like(temp_score)
                    file_bbox_3d = torch.cat(
                        [temp_label, bbox_3d, temp_score, temp_id], dim=1)
                    file_bbox_3d = file_bbox_3d.numpy()
                    postfix = '.txt'
                    np.savetxt(box_res_path + '/' + file_name + postfix,
                               file_bbox_3d,
                               fmt='%.3f')

        if 'seg' in args.eval:
            mmcv.mkdir_or_exist(args.out)
            dataset.evaluate_seg(outputs,
                                 result_names=['sem_preds'],
                                 out_dir=args.out)
        elif 'pano' in args.eval:
            import numpy as np
            from selective_seg.util_tools.evaluate_panoptic import init_eval, printResults, eval_one_scan

            #log_file = osp.join(args.out, f'{timestamp}.log')
            log_file = os.path.join(args.out, 'pano_res.log')
            logger = get_root_logger(log_file=log_file,
                                     log_level=cfg.log_level)

            gt_label_path = '/data/nuscenes_opendata/ordered_seg_label/val/seg_ins_mask'

            mmcv.mkdir_or_exist(args.out)
            min_points = 15  # 15 for nuscenes,  50 for semantickitti official param
            evaluator = init_eval(dataset_type=cfg['dataset_type'],
                                  min_points=min_points)

            for i in range(len(outputs)):
                gt_file_path = os.path.join(gt_label_path,
                                            str(i).zfill(6) + '.bin')
                gt_labels = np.fromfile(gt_file_path,
                                        dtype=np.uint8).reshape(-1, 2)
                gt_sem_labels = gt_labels[:, 0]
                gt_ins_labels = gt_labels[:, 1]
                pred_sem_labels = outputs[i]['sem_preds'].cpu().numpy()
                pred_ins_labels = outputs[i]['ins_preds'].cpu().numpy()

                eval_one_scan(evaluator, gt_sem_labels, gt_ins_labels,
                              pred_sem_labels, pred_ins_labels)

            eval_results = printResults(evaluator, logger=logger)
        '''
예제 #26
0
def main(
    config=None,
    checkpoint=None,
    img_prefix=None,
    ann_file=None,
    flip=False,
    out=None,
    format_only=False,
    eval=None,
    show=False,
    show_dir=None,
    log_file=None,
    fold=None,
    show_score_thr=0.3,
    gpu_collect=False,
    tmpdir=None,
    options=None,
    launcher="none",
    local_rank=0,
    score_thr=None,
    iou_thr=None,
) -> Tuple[list, WheatDataset]:
    logger = get_logger("inference", log_file=log_file, log_mode="a")
    assert out or eval or format_only or show or show_dir, (
        "Please specify at least one operation (save/eval/format/show the "
        'results / save the results) with the argument "--out", "--eval"'
        ', "--format-only", "--show" or "--show-dir"')

    if eval and format_only:
        raise ValueError("--eval and --format_only cannot be both specified")

    if out is not None and not out.endswith((".pkl", ".pickle")):
        raise ValueError("The output file must be a pkl file.")

    cfg = Config.fromfile(config)
    if fold is not None:
        cfg.data.test.ann_file = cfg.data.test.ann_file.format(fold=fold)
    if img_prefix is not None:
        cfg.data.test.img_prefix = img_prefix
    if ann_file is not None:
        cfg.data.test.ann_file = ann_file
    if flip:
        print(cfg.data.test.pipeline[-1])
        print(f"flip: {cfg.data.test.pipeline[-1].flip}")
        cfg.data.test.pipeline[-1].flip_direction = ["horizontal", "vertical"]
        cfg.data.test.pipeline[-1].flip = flip
    if score_thr is not None:
        if "rcnn" in cfg.test_cfg:
            cfg.test_cfg.rcnn.score_thr = score_thr
        else:
            cfg.test_cfg.score_thr = score_thr
    if iou_thr is not None:
        if "rcnn" in cfg.test_cfg:
            cfg.test_cfg.rcnn.nms.iou_thr = iou_thr
        else:
            cfg.test_cfg.nms.iou_thr = iou_thr
    # set cudnn_benchmark
    if cfg.get("cudnn_benchmark", False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if launcher == "none":
        distributed = False
    else:
        distributed = True
        init_dist(launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get("fp16", None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, checkpoint, map_location="cpu")
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if "CLASSES" in checkpoint["meta"]:
        model.CLASSES = checkpoint["meta"]["CLASSES"]
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, show, show_dir,
                                  show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, tmpdir, gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if out:
            print(f"\nwriting results to {out}")
            mmcv.dump(outputs, out)
        kwargs = {} if options is None else options
        if format_only:
            dataset.format_results(outputs, **kwargs)
        if eval:
            print_log(f"config: {config}", logger)
            print_log(f"score_thr: {score_thr}", logger)
            print_log(f"iou_thr: {iou_thr}", logger)
            dataset.evaluate(outputs, logger=logger, **kwargs)
    return outputs, dataset
예제 #27
0
파일: test.py 프로젝트: Pandinosaurus/mmocr
def main():
    args = parse_args()

    assert (
        args.out or args.eval or args.format_only or args.show
        or args.show_dir), (
            'Please specify at least one operation (save/eval/format/show the '
            'results / save the results) with the argument "--out", "--eval"'
            ', "--format-only", "--show" or "--show-dir".')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified.')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # import modules from string list.
    if cfg.get('custom_imports', None):
        from mmcv.utils import import_modules_from_strings
        import_modules_from_strings(**cfg['custom_imports'])
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    if cfg.model.get('pretrained'):
        cfg.model.pretrained = None
    if cfg.model.get('neck'):
        if isinstance(cfg.model.neck, list):
            for neck_cfg in cfg.model.neck:
                if neck_cfg.get('rfp_backbone'):
                    if neck_cfg.rfp_backbone.get('pretrained'):
                        neck_cfg.rfp_backbone.pretrained = None
        elif cfg.model.neck.get('rfp_backbone'):
            if cfg.model.neck.rfp_backbone.get('pretrained'):
                cfg.model.neck.rfp_backbone.pretrained = None

    # in case the test dataset is concatenated
    samples_per_gpu = 1
    if isinstance(cfg.data.test, dict):
        samples_per_gpu = (cfg.data.get('test_dataloader', {})).get(
            'samples_per_gpu', cfg.data.get('samples_per_gpu', 1))
        if samples_per_gpu > 1:
            # Support batch_size > 1 in test for text recognition
            # by disable MultiRotateAugOCR since it is useless for most case
            cfg = disable_text_recog_aug_test(cfg)
            if cfg.data.test.get('pipeline', None) is not None:
                # Replace 'ImageToTensor' to 'DefaultFormatBundle'
                cfg.data.test.pipeline = replace_ImageToTensor(
                    cfg.data.test.pipeline)
    elif isinstance(cfg.data.test, list):
        for ds_cfg in cfg.data.test:
            ds_cfg.test_mode = True
        samples_per_gpu = max(
            [ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test])
        if samples_per_gpu > 1:
            for ds_cfg in cfg.data.test:
                ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    # step 1: give default values and override (if exist) from cfg.data
    loader_cfg = {
        **dict(seed=cfg.get('seed'), drop_last=False, dist=distributed),
        **({} if torch.__version__ != 'parrots' else dict(
               prefetch_num=2,
               pin_memory=False,
           )),
        **dict((k, cfg.data[k]) for k in [
                   'workers_per_gpu',
                   'seed',
                   'prefetch_num',
                   'pin_memory',
                   'persistent_workers',
               ] if k in cfg.data)
    }
    test_loader_cfg = {
        **loader_cfg,
        **dict(shuffle=False, drop_last=False),
        **cfg.data.get('test_dataloader', {}),
        **dict(samples_per_gpu=samples_per_gpu)
    }

    data_loader = build_dataloader(dataset, **test_loader_cfg)

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
    model = revert_sync_batchnorm(model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        is_kie = cfg.model.type in ['SDMGR']
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  is_kie, args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                    'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
                    'rule'
            ]:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            print(dataset.evaluate(outputs, **eval_kwargs))
예제 #28
0
def main():

    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if cfg.get('USE_MMDET', False):
        from mmdet.apis import multi_gpu_test, single_gpu_test
        from mmdet.models import build_detector as build_model
        from mmdet.datasets import build_dataloader
    else:
        from mmtrack.apis import multi_gpu_test, single_gpu_test
        from mmtrack.models import build_model
        from mmtrack.datasets import build_dataloader
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # cfg.model.pretrains = None
    if hasattr(cfg.model, 'detector'):
        cfg.model.detector.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    logger = get_logger('ParamsSearcher', log_file=args.log)
    # get all cases
    search_params = get_search_params(cfg.model.tracker, logger=logger)
    combinations = [p for p in product(*search_params.values())]
    search_cfgs = []
    for c in combinations:
        search_cfg = dotty(cfg.model.tracker.copy())
        for i, k in enumerate(search_params.keys()):
            search_cfg[k] = c[i]
        search_cfgs.append(dict(search_cfg))
    print_log(f'Totally {len(search_cfgs)} cases.', logger)
    # init with the first one
    cfg.model.tracker = search_cfgs[0].copy()

    # build the model and load checkpoint
    if cfg.get('test_cfg', False):
        model = build_model(cfg.model,
                            train_cfg=cfg.train_cfg,
                            test_cfg=cfg.test_cfg)
    else:
        model = build_model(cfg.model)
    # We need call `init_weights()` to load pretained weights in MOT task.
    model.init_weights()
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)

    if args.checkpoint is not None:
        checkpoint = load_checkpoint(model,
                                     args.checkpoint,
                                     map_location='cpu')
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
    if not hasattr(model, 'CLASSES'):
        model.CLASSES = dataset.CLASSES

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)

    print_log(f'Record {cfg.search_metrics}.', logger)
    for i, search_cfg in enumerate(search_cfgs):
        if not distributed:
            model.module.tracker = build_tracker(search_cfg)
            outputs = single_gpu_test(model, data_loader, args.show,
                                      args.show_dir)
        else:
            model.module.tracker = build_tracker(search_cfg)
            outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                     args.gpu_collect)
        rank, _ = get_dist_info()
        if rank == 0:
            if args.out:
                print(f'\nwriting results to {args.out}')
                mmcv.dump(outputs, args.out)
            kwargs = {} if args.eval_options is None else args.eval_options
            if args.format_only:
                dataset.format_results(outputs, **kwargs)
            if args.eval:
                eval_kwargs = cfg.get('evaluation', {}).copy()
                # hard-code way to remove EvalHook args
                for key in ['interval', 'tmpdir', 'start', 'gpu_collect']:
                    eval_kwargs.pop(key, None)
                eval_kwargs.update(dict(metric=args.eval, **kwargs))
                results = dataset.evaluate(outputs, **eval_kwargs)
                _records = []
                for k in cfg.search_metrics:
                    if isinstance(results[k], float):
                        _records.append(f'{(results[k]):.3f}')
                    else:
                        _records.append(f'{(results[k])}')
                print_log(f'{combinations[i]}: {_records}', logger)
예제 #29
0
파일: test.py 프로젝트: Long-ThanhLe/VDTSE
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results) with the argument "--out", "--eval", "--format_only" '
         'or "--show"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_module(model)
    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print('\nwriting results to {}'.format(args.out))
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.options is None else args.options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            dataset.evaluate(outputs, args.eval, **kwargs)
예제 #30
0
def main():
    args = parse_args()

    assert args.eval or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (eval/show the '
         'results) with the argument "--eval"'
         ', "--show" or "--show-dir"')

    cfg = Config.fromfile(args.config)

    if cfg.get('USE_MMDET', False):
        from mmdet.apis import multi_gpu_test, single_gpu_test
        from mmdet.datasets import build_dataloader
        from mmdet.models import build_detector as build_model
        if 'detector' in cfg.model:
            cfg.model = cfg.model.detector
    elif cfg.get('USE_MMCLS', False):
        from mmtrack.apis import multi_gpu_test, single_gpu_test
        from mmtrack.datasets import build_dataloader
        from mmtrack.models import build_reid as build_model
        if 'reid' in cfg.model:
            cfg.model = cfg.model.reid
    else:
        from mmtrack.apis import multi_gpu_test, single_gpu_test
        from mmtrack.datasets import build_dataloader
        from mmtrack.models import build_model
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    logger = get_logger('SOTParamsSearcher', log_file=args.log)

    # build the model and load checkpoint
    if cfg.get('test_cfg', False):
        model = build_model(cfg.model,
                            train_cfg=cfg.train_cfg,
                            test_cfg=cfg.test_cfg)
    else:
        model = build_model(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    if args.checkpoint is not None:
        checkpoint = load_checkpoint(model,
                                     args.checkpoint,
                                     map_location='cpu')
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
    if not hasattr(model, 'CLASSES'):
        model.CLASSES = dataset.CLASSES

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)

    if 'meta' in checkpoint and 'hook_msgs' in checkpoint[
            'meta'] and 'best_score' in checkpoint['meta']['hook_msgs']:
        best_score = checkpoint['meta']['hook_msgs']['best_score']
    else:
        best_score = 0

    best_result = dict(success=best_score, norm_precision=0., precision=0.)
    best_params = dict(penalty_k=cfg.model.test_cfg.rpn.penalty_k,
                       lr=cfg.model.test_cfg.rpn.lr,
                       win_influ=cfg.model.test_cfg.rpn.window_influence)
    print_log(f'init best score as: {best_score}', logger)
    print_log(f'init best params as: {best_params}', logger)

    num_cases = len(args.penalty_k_range) * len(args.lr_range) * len(
        args.win_influ_range)
    case_count = 0

    for penalty_k in args.penalty_k_range:
        for lr in args.lr_range:
            for win_influ in args.win_influ_range:
                case_count += 1
                cfg.model.test_cfg.rpn.penalty_k = penalty_k
                cfg.model.test_cfg.rpn.lr = lr
                cfg.model.test_cfg.rpn.window_influence = win_influ
                print_log(f'-----------[{case_count}/{num_cases}]-----------',
                          logger)
                print_log(
                    f'penalty_k={penalty_k} lr={lr} win_influence={win_influ}',
                    logger)

                if not distributed:
                    outputs = single_gpu_test(
                        model,
                        data_loader,
                        args.show,
                        args.show_dir,
                        show_score_thr=args.show_score_thr)
                else:
                    outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                             args.gpu_collect)

                rank, _ = get_dist_info()
                if rank == 0:
                    kwargs = args.eval_options if args.eval_options else {}
                    if args.eval:
                        eval_kwargs = cfg.get('evaluation', {}).copy()
                        # hard-code way to remove EvalHook args
                        eval_hook_args = [
                            'interval', 'tmpdir', 'start', 'gpu_collect',
                            'save_best', 'rule', 'by_epoch'
                        ]
                        for key in eval_hook_args:
                            eval_kwargs.pop(key, None)
                        eval_kwargs.update(dict(metric=args.eval, **kwargs))
                        eval_results = dataset.evaluate(outputs, **eval_kwargs)
                        # print(eval_results)
                        print_log(f'evaluation results: {eval_results}',
                                  logger)
                        print_log('------------------------------------------',
                                  logger)
                        if eval_results['success'] > best_result['success']:
                            best_result = eval_results
                            best_params['penalty_k'] = penalty_k,
                            best_params['lr'] = lr,
                            best_params['win_influ'] = win_influ

                        print_log(
                            f'The current best evaluation results: \
                                {best_result}', logger)
                        print_log(f'The current best params: {best_params}',
                                  logger)

    print_log(
        f'After parameter searching, the best evaluation results: \
            {best_result}', logger)
    print_log(f'After parameter searching, the best params: {best_params}',
              logger)