def __init__(self):
        super(Net3, self).__init__()

        cfg = mmcv.Config.fromfile('/home/liuziming/mmdetection/configs/rpn_r50_fpn_1x.py')
        # set cudnn_benchmark
        if cfg.get('cudnn_benchmark', False):
            torch.backends.cudnn.benchmark = True
        cfg.model.pretrained = None
        cfg.data.test.test_mode = True
        self.RPN = builder.build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)

        self.backbone = ResNet(50,4,frozen_stages=1,)
        self.init_weights(pretrained='modelzoo://resnet50')
        self.relation = SelfAttention(2,256,256,256)
        self.fc = nn.Linear(256*2,40)
        self.avgpool  = nn.AdaptiveAvgPool2d((1,1))
예제 #2
0
def test_resnest_stem():
    # Test default stem_channels
    model = ResNet(50)
    assert model.stem_channels == 64
    assert model.conv1.out_channels == 64
    assert model.norm1.num_features == 64

    # Test default stem_channels, with base_channels=3
    model = ResNet(50, base_channels=3)
    assert model.stem_channels == 3
    assert model.conv1.out_channels == 3
    assert model.norm1.num_features == 3
    assert model.layer1[0].conv1.in_channels == 3

    # Test stem_channels=3
    model = ResNet(50, stem_channels=3)
    assert model.stem_channels == 3
    assert model.conv1.out_channels == 3
    assert model.norm1.num_features == 3
    assert model.layer1[0].conv1.in_channels == 3

    # Test stem_channels=3, with base_channels=2
    model = ResNet(50, stem_channels=3, base_channels=2)
    assert model.stem_channels == 3
    assert model.conv1.out_channels == 3
    assert model.norm1.num_features == 3
    assert model.layer1[0].conv1.in_channels == 3

    # Test V1d stem_channels
    model = ResNetV1d(depth=50, stem_channels=6)
    model.train()
    assert model.stem[0].out_channels == 3
    assert model.stem[1].num_features == 3
    assert model.stem[3].out_channels == 3
    assert model.stem[4].num_features == 3
    assert model.stem[6].out_channels == 6
    assert model.stem[7].num_features == 6
    assert model.layer1[0].conv1.in_channels == 6
class Net3(nn.Module):
    def __init__(self):
        super(Net3, self).__init__()

        cfg = mmcv.Config.fromfile('/home/liuziming/mmdetection/configs/rpn_r50_fpn_1x.py')
        # set cudnn_benchmark
        if cfg.get('cudnn_benchmark', False):
            torch.backends.cudnn.benchmark = True
        cfg.model.pretrained = None
        cfg.data.test.test_mode = True
        self.RPN = builder.build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)

        self.backbone = ResNet(50,4,frozen_stages=1,)
        self.init_weights(pretrained='modelzoo://resnet50')
        self.relation = SelfAttention(2,256,256,256)
        self.fc = nn.Linear(256*2,40)
        self.avgpool  = nn.AdaptiveAvgPool2d((1,1))

    def init_weights(self,pretrained=None):
        super(Net3, self).init_weights(pretrained)
        load_checkpoint(self.RPN, '/home/share/LabServer/GLnet/MODELZOO/rpn_r50_fpn_2x_20181010-88a4a471.pth')
        self.backbone.init_weights(pretrained)
    def forward(self, x):

        with torch.no_grad():
            #return loss 控制训练/测试
            #参数 传入 basedetector 的forward
            result,roi_feats = self.RPN(return_loss=False, rescale=False, **x)
        roi_feats=self.avgpool(roi_feats)
        roi_feats = torch.mean(roi_feats,dim=1).view(roi_feats.size(0),-1)
        assert roi_feats.size(1) ==256
        global_feat = self.backbone(x)
        global_feat = self.avgpool(global_feat).view(global_feat.size(0),-1)
        assert  global_feat.size(1) ==256
        combine_feat = global_feat + roi_feats
        output = self.fc(combine_feat)
        return output
예제 #4
0
def test_resnet_backbone():
    """Test resnet backbone."""
    with pytest.raises(KeyError):
        # ResNet depth should be in [18, 34, 50, 101, 152]
        ResNet(20)

    with pytest.raises(AssertionError):
        # In ResNet: 1 <= num_stages <= 4
        ResNet(50, num_stages=0)

    with pytest.raises(AssertionError):
        # len(stage_with_dcn) == num_stages
        dcn = dict(type='DCN', deformable_groups=1, fallback_on_stride=False)
        ResNet(50, dcn=dcn, stage_with_dcn=(True, ))

    with pytest.raises(AssertionError):
        # len(stage_with_plugin) == num_stages
        plugins = [
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                stages=(False, True, True),
                position='after_conv3')
        ]
        ResNet(50, plugins=plugins)

    with pytest.raises(AssertionError):
        # In ResNet: 1 <= num_stages <= 4
        ResNet(50, num_stages=5)

    with pytest.raises(AssertionError):
        # len(strides) == len(dilations) == num_stages
        ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)

    with pytest.raises(TypeError):
        # pretrained must be a string path
        model = ResNet(50)
        model.init_weights(pretrained=0)

    with pytest.raises(AssertionError):
        # Style must be in ['pytorch', 'caffe']
        ResNet(50, style='tensorflow')

    # Test ResNet50 norm_eval=True
    model = ResNet(50, norm_eval=True)
    model.init_weights()
    model.train()
    assert check_norm_state(model.modules(), False)

    # Test ResNet50 with torchvision pretrained weight
    model = ResNet(depth=50, norm_eval=True)
    model.init_weights('torchvision://resnet50')
    model.train()
    assert check_norm_state(model.modules(), False)

    # Test ResNet50 with first stage frozen
    frozen_stages = 1
    model = ResNet(50, frozen_stages=frozen_stages)
    model.init_weights()
    model.train()
    assert model.norm1.training is False
    for layer in [model.conv1, model.norm1]:
        for param in layer.parameters():
            assert param.requires_grad is False
    for i in range(1, frozen_stages + 1):
        layer = getattr(model, f'layer{i}')
        for mod in layer.modules():
            if isinstance(mod, _BatchNorm):
                assert mod.training is False
        for param in layer.parameters():
            assert param.requires_grad is False

    # Test ResNet50V1d with first stage frozen
    model = ResNetV1d(depth=50, frozen_stages=frozen_stages)
    assert len(model.stem) == 9
    model.init_weights()
    model.train()
    check_norm_state(model.stem, False)
    for param in model.stem.parameters():
        assert param.requires_grad is False
    for i in range(1, frozen_stages + 1):
        layer = getattr(model, f'layer{i}')
        for mod in layer.modules():
            if isinstance(mod, _BatchNorm):
                assert mod.training is False
        for param in layer.parameters():
            assert param.requires_grad is False

    # Test ResNet18 forward
    model = ResNet(18)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 64, 56, 56])
    assert feat[1].shape == torch.Size([1, 128, 28, 28])
    assert feat[2].shape == torch.Size([1, 256, 14, 14])
    assert feat[3].shape == torch.Size([1, 512, 7, 7])

    # Test ResNet18 with checkpoint forward
    model = ResNet(18, with_cp=True)
    for m in model.modules():
        if is_block(m):
            assert m.with_cp

    # Test ResNet50 with BatchNorm forward
    model = ResNet(50)
    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, _BatchNorm)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 with layers 1, 2, 3 out forward
    model = ResNet(50, out_indices=(0, 1, 2))
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 3
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])

    # Test ResNet50 with checkpoint forward
    model = ResNet(50, with_cp=True)
    for m in model.modules():
        if is_block(m):
            assert m.with_cp
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 with GroupNorm forward
    model = ResNet(
        50, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))
    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, GroupNorm)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 with 1 GeneralizedAttention after conv2, 1 NonLocal2D
    # after conv2, 1 ContextBlock after conv3 in layers 2, 3, 4
    plugins = [
        dict(
            cfg=dict(
                type='GeneralizedAttention',
                spatial_range=-1,
                num_heads=8,
                attention_type='0010',
                kv_stride=2),
            stages=(False, True, True, True),
            position='after_conv2'),
        dict(cfg=dict(type='NonLocal2D'), position='after_conv2'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16),
            stages=(False, True, True, False),
            position='after_conv3')
    ]
    model = ResNet(50, plugins=plugins)
    for m in model.layer1.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert not hasattr(m, 'gen_attention_block')
            assert m.nonlocal_block.in_channels == 64
    for m in model.layer2.modules():
        if is_block(m):
            assert m.nonlocal_block.in_channels == 128
            assert m.gen_attention_block.in_channels == 128
            assert m.context_block.in_channels == 512

    for m in model.layer3.modules():
        if is_block(m):
            assert m.nonlocal_block.in_channels == 256
            assert m.gen_attention_block.in_channels == 256
            assert m.context_block.in_channels == 1024

    for m in model.layer4.modules():
        if is_block(m):
            assert m.nonlocal_block.in_channels == 512
            assert m.gen_attention_block.in_channels == 512
            assert not hasattr(m, 'context_block')
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 with 1 ContextBlock after conv2, 1 ContextBlock after
    # conv3 in layers 2, 3, 4
    plugins = [
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
            stages=(False, True, True, False),
            position='after_conv3'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
            stages=(False, True, True, False),
            position='after_conv3')
    ]

    model = ResNet(50, plugins=plugins)
    for m in model.layer1.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert not hasattr(m, 'context_block1')
            assert not hasattr(m, 'context_block2')
    for m in model.layer2.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert m.context_block1.in_channels == 512
            assert m.context_block2.in_channels == 512

    for m in model.layer3.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert m.context_block1.in_channels == 1024
            assert m.context_block2.in_channels == 1024

    for m in model.layer4.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert not hasattr(m, 'context_block1')
            assert not hasattr(m, 'context_block2')
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 zero initialization of residual
    model = ResNet(50, zero_init_residual=True)
    model.init_weights()
    for m in model.modules():
        if isinstance(m, Bottleneck):
            assert all_zeros(m.norm3)
        elif isinstance(m, BasicBlock):
            assert all_zeros(m.norm2)
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNetV1d forward
    model = ResNetV1d(depth=50)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 stem_channels
    model = ResNet(depth=50, stem_channels=128)
    model.init_weights()
    model.train()
    assert model.conv1.out_channels == 128
    assert model.layer1[0].conv1.in_channels == 128

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50V1d stem_channels
    model = ResNetV1d(depth=50, stem_channels=128)
    model.init_weights()
    model.train()
    assert model.stem[0].out_channels == 64
    assert model.stem[3].out_channels == 64
    assert model.stem[6].out_channels == 128
    assert model.layer1[0].conv1.in_channels == 128

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])
예제 #5
0
def test_resnest_stem():
    # Test default stem_channels
    model = ResNet(50)
    assert model.stem_channels == 64
    assert model.conv1.out_channels == 64
    assert model.norm1.num_features == 64

    # Test default stem_channels, with base_channels=32
    model = ResNet(50, base_channels=32)
    assert model.stem_channels == 32
    assert model.conv1.out_channels == 32
    assert model.norm1.num_features == 32
    assert model.layer1[0].conv1.in_channels == 32

    # Test stem_channels=64
    model = ResNet(50, stem_channels=64)
    assert model.stem_channels == 64
    assert model.conv1.out_channels == 64
    assert model.norm1.num_features == 64
    assert model.layer1[0].conv1.in_channels == 64

    # Test stem_channels=64, with base_channels=32
    model = ResNet(50, stem_channels=64, base_channels=32)
    assert model.stem_channels == 64
    assert model.conv1.out_channels == 64
    assert model.norm1.num_features == 64
    assert model.layer1[0].conv1.in_channels == 64

    # Test stem_channels=128
    model = ResNet(depth=50, stem_channels=128)
    model.init_weights()
    model.train()
    assert model.conv1.out_channels == 128
    assert model.layer1[0].conv1.in_channels == 128

    # Test V1d stem_channels
    model = ResNetV1d(depth=50, stem_channels=128)
    model.init_weights()
    model.train()
    assert model.stem[0].out_channels == 64
    assert model.stem[1].num_features == 64
    assert model.stem[3].out_channels == 64
    assert model.stem[4].num_features == 64
    assert model.stem[6].out_channels == 128
    assert model.stem[7].num_features == 128
    assert model.layer1[0].conv1.in_channels == 128