예제 #1
0
    def __init__(self,
                 in_channels,
                 out_channels,
                 num_outs,
                 start_level=0,
                 end_level=-1,
                 norm_cfg=None,
                 act_cfg=None,
                 order=('conv', 'norm', 'act'),
                 upsample_cfg=dict(type='carafe',
                                   up_kernel=5,
                                   up_group=1,
                                   encoder_kernel=3,
                                   encoder_dilation=1)):
        super(FPN_CARAFE, self).__init__()
        assert isinstance(in_channels, list)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_ins = len(in_channels)
        self.num_outs = num_outs
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.with_bias = norm_cfg is None
        self.upsample_cfg = upsample_cfg.copy()
        self.upsample = self.upsample_cfg.get('type')
        self.relu = nn.ReLU(inplace=False)
        self.fp16_enabled = False

        self.order = order
        assert order in [('conv', 'norm', 'act'), ('act', 'conv', 'norm')]

        assert self.upsample in [
            'nearest', 'bilinear', 'deconv', 'pixel_shuffle', 'carafe', None
        ]
        if self.upsample in ['deconv', 'pixel_shuffle']:
            assert hasattr(
                self.upsample_cfg,
                'upsample_kernel') and self.upsample_cfg.upsample_kernel > 0
            self.upsample_kernel = self.upsample_cfg.pop('upsample_kernel')

        if end_level == -1:
            self.backbone_end_level = self.num_ins
            assert num_outs >= self.num_ins - start_level
        else:
            # if end_level < inputs, no extra level is allowed
            self.backbone_end_level = end_level
            assert end_level <= len(in_channels)
            assert num_outs == end_level - start_level
        self.start_level = start_level
        self.end_level = end_level

        self.lateral_convs = nn.ModuleList()
        self.fpn_convs = nn.ModuleList()
        self.upsample_modules = nn.ModuleList()

        for i in range(self.start_level, self.backbone_end_level):
            l_conv = ConvModule(in_channels[i],
                                out_channels,
                                1,
                                norm_cfg=norm_cfg,
                                bias=self.with_bias,
                                act_cfg=act_cfg,
                                inplace=False,
                                order=self.order)
            fpn_conv = ConvModule(out_channels,
                                  out_channels,
                                  3,
                                  padding=1,
                                  norm_cfg=self.norm_cfg,
                                  bias=self.with_bias,
                                  act_cfg=act_cfg,
                                  inplace=False,
                                  order=self.order)
            if i != self.backbone_end_level - 1:
                upsample_cfg_ = self.upsample_cfg.copy()
                if self.upsample == 'deconv':
                    upsample_cfg_.update(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        kernel_size=self.upsample_kernel,
                        stride=2,
                        padding=(self.upsample_kernel - 1) // 2,
                        output_padding=(self.upsample_kernel - 1) // 2)
                elif self.upsample == 'pixel_shuffle':
                    upsample_cfg_.update(in_channels=out_channels,
                                         out_channels=out_channels,
                                         scale_factor=2,
                                         upsample_kernel=self.upsample_kernel)
                elif self.upsample == 'carafe':
                    upsample_cfg_.update(channels=out_channels, scale_factor=2)
                else:
                    # suppress warnings
                    align_corners = (None
                                     if self.upsample == 'nearest' else False)
                    upsample_cfg_.update(scale_factor=2,
                                         mode=self.upsample,
                                         align_corners=align_corners)
                upsample_module = build_upsample_layer(upsample_cfg_)
                self.upsample_modules.append(upsample_module)
            self.lateral_convs.append(l_conv)
            self.fpn_convs.append(fpn_conv)

        # add extra conv layers (e.g., RetinaNet)
        extra_out_levels = (num_outs - self.backbone_end_level +
                            self.start_level)
        if extra_out_levels >= 1:
            for i in range(extra_out_levels):
                in_channels = (self.in_channels[self.backbone_end_level -
                                                1] if i == 0 else out_channels)
                extra_l_conv = ConvModule(in_channels,
                                          out_channels,
                                          3,
                                          stride=2,
                                          padding=1,
                                          norm_cfg=norm_cfg,
                                          bias=self.with_bias,
                                          act_cfg=act_cfg,
                                          inplace=False,
                                          order=self.order)
                if self.upsample == 'deconv':
                    upsampler_cfg_ = dict(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        kernel_size=self.upsample_kernel,
                        stride=2,
                        padding=(self.upsample_kernel - 1) // 2,
                        output_padding=(self.upsample_kernel - 1) // 2)
                elif self.upsample == 'pixel_shuffle':
                    upsampler_cfg_ = dict(in_channels=out_channels,
                                          out_channels=out_channels,
                                          scale_factor=2,
                                          upsample_kernel=self.upsample_kernel)
                elif self.upsample == 'carafe':
                    upsampler_cfg_ = dict(channels=out_channels,
                                          scale_factor=2,
                                          **self.upsample_cfg)
                else:
                    # suppress warnings
                    align_corners = (None
                                     if self.upsample == 'nearest' else False)
                    upsampler_cfg_ = dict(scale_factor=2,
                                          mode=self.upsample,
                                          align_corners=align_corners)
                upsampler_cfg_['type'] = self.upsample
                upsample_module = build_upsample_layer(upsampler_cfg_)
                extra_fpn_conv = ConvModule(out_channels,
                                            out_channels,
                                            3,
                                            padding=1,
                                            norm_cfg=self.norm_cfg,
                                            bias=self.with_bias,
                                            act_cfg=act_cfg,
                                            inplace=False,
                                            order=self.order)
                self.upsample_modules.append(upsample_module)
                self.fpn_convs.append(extra_fpn_conv)
                self.lateral_convs.append(extra_l_conv)
    def __init__(self,
                 num_convs=4,
                 roi_feat_size=14,
                 in_channels=256,
                 conv_kernel_size=3,
                 conv_out_channels=256,
                 num_classes=81,
                 class_agnostic=False,
                 upsample_cfg=dict(type='deconv', scale_factor=2),
                 conv_cfg=None,
                 norm_cfg=None,
                 loss_mask=dict(
                     type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)):
        super(FCNMaskHead, self).__init__()
        self.upsample_cfg = upsample_cfg.copy()
        if self.upsample_cfg['type'] not in [
                None, 'deconv', 'nearest', 'bilinear', 'carafe'
        ]:
            raise ValueError(
                'Invalid upsample method {}, accepted methods '
                'are "deconv", "nearest", "bilinear", "carafe"'.format(
                    self.upsample_cfg['type']))
        self.num_convs = num_convs
        # WARN: roi_feat_size is reserved and not used
        self.roi_feat_size = _pair(roi_feat_size)
        self.in_channels = in_channels
        self.conv_kernel_size = conv_kernel_size
        self.conv_out_channels = conv_out_channels
        self.upsample_method = self.upsample_cfg.get('type')
        self.scale_factor = self.upsample_cfg.pop('scale_factor')
        self.num_classes = num_classes
        self.class_agnostic = class_agnostic
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.fp16_enabled = False
        self.loss_mask = build_loss(loss_mask)

        self.convs = nn.ModuleList()
        for i in range(self.num_convs):
            in_channels = (
                self.in_channels if i == 0 else self.conv_out_channels)
            padding = (self.conv_kernel_size - 1) // 2
            self.convs.append(
                ConvModule(
                    in_channels,
                    self.conv_out_channels,
                    self.conv_kernel_size,
                    padding=padding,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg))
        upsample_in_channels = (
            self.conv_out_channels if self.num_convs > 0 else in_channels)
        upsample_cfg_ = self.upsample_cfg.copy()
        if self.upsample_method is None:
            self.upsample = None
        elif self.upsample_method == 'deconv':
            upsample_cfg_.update(
                in_channels=upsample_in_channels,
                out_channels=self.conv_out_channels,
                kernel_size=self.scale_factor,
                stride=self.scale_factor)
        elif self.upsample_method == 'carafe':
            upsample_cfg_.update(
                channels=upsample_in_channels, scale_factor=self.scale_factor)
        else:
            # suppress warnings
            align_corners = (None
                             if self.upsample_method == 'nearest' else False)
            upsample_cfg_.update(
                scale_factor=self.scale_factor,
                mode=self.upsample_method,
                align_corners=align_corners)
        self.upsample = build_upsample_layer(upsample_cfg_)

        out_channels = 1 if self.class_agnostic else self.num_classes
        logits_in_channel = (
            self.conv_out_channels
            if self.upsample_method == 'deconv' else upsample_in_channels)
        self.conv_logits = nn.Conv2d(logits_in_channel, out_channels, 1)
        self.relu = nn.ReLU(inplace=True)
        self.debug_imgs = None
예제 #3
0
파일: fpn_carafe.py 프로젝트: zyg11/TSD
    def __init__(
        self,
        in_channels,
        out_channels,
        num_outs,
        start_level=0,
        end_level=-1,
        norm_cfg=None,
        act_cfg=None,
        order=("conv", "norm", "act"),
        upsample_cfg=dict(type="carafe",
                          up_kernel=5,
                          up_group=1,
                          encoder_kernel=3,
                          encoder_dilation=1),
    ):
        super(FPN_CARAFE, self).__init__()
        assert isinstance(in_channels, list)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_ins = len(in_channels)
        self.num_outs = num_outs
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.with_bias = norm_cfg is None
        self.upsample_cfg = upsample_cfg.copy()
        self.upsample = self.upsample_cfg.get("type")
        self.relu = nn.ReLU(inplace=False)

        self.order = order
        assert order in [("conv", "norm", "act"), ("act", "conv", "norm")]

        assert self.upsample in [
            "nearest",
            "bilinear",
            "deconv",
            "pixel_shuffle",
            "carafe",
            None,
        ]
        if self.upsample in ["deconv", "pixel_shuffle"]:
            assert (hasattr(self.upsample_cfg, "upsample_kernel")
                    and self.upsample_cfg.upsample_kernel > 0)
            self.upsample_kernel = self.upsample_cfg.pop("upsample_kernel")

        if end_level == -1:
            self.backbone_end_level = self.num_ins
            assert num_outs >= self.num_ins - start_level
        else:
            # if end_level < inputs, no extra level is allowed
            self.backbone_end_level = end_level
            assert end_level <= len(in_channels)
            assert num_outs == end_level - start_level
        self.start_level = start_level
        self.end_level = end_level

        self.lateral_convs = nn.ModuleList()
        self.fpn_convs = nn.ModuleList()
        self.upsample_modules = nn.ModuleList()

        for i in range(self.start_level, self.backbone_end_level):
            l_conv = ConvModule(
                in_channels[i],
                out_channels,
                1,
                norm_cfg=norm_cfg,
                bias=self.with_bias,
                act_cfg=act_cfg,
                inplace=False,
                order=self.order,
            )
            fpn_conv = ConvModule(
                out_channels,
                out_channels,
                3,
                padding=1,
                norm_cfg=self.norm_cfg,
                bias=self.with_bias,
                act_cfg=act_cfg,
                inplace=False,
                order=self.order,
            )
            if i != self.backbone_end_level - 1:
                upsample_cfg_ = self.upsample_cfg.copy()
                if self.upsample == "deconv":
                    upsample_cfg_.update(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        kernel_size=self.upsample_kernel,
                        stride=2,
                        padding=(self.upsample_kernel - 1) // 2,
                        output_padding=(self.upsample_kernel - 1) // 2,
                    )
                elif self.upsample == "pixel_shuffle":
                    upsample_cfg_.update(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        scale_factor=2,
                        upsample_kernel=self.upsample_kernel,
                    )
                elif self.upsample == "carafe":
                    upsample_cfg_.update(channels=out_channels, scale_factor=2)
                else:
                    # suppress warnings
                    align_corners = None if self.upsample == "nearest" else False
                    upsample_cfg_.update(scale_factor=2,
                                         mode=self.upsample,
                                         align_corners=align_corners)
                upsample_module = build_upsample_layer(upsample_cfg_)
                self.upsample_modules.append(upsample_module)
            self.lateral_convs.append(l_conv)
            self.fpn_convs.append(fpn_conv)

        # add extra conv layers (e.g., RetinaNet)
        extra_out_levels = num_outs - self.backbone_end_level + self.start_level
        if extra_out_levels >= 1:
            for i in range(extra_out_levels):
                in_channels = (self.in_channels[self.backbone_end_level -
                                                1] if i == 0 else out_channels)
                extra_l_conv = ConvModule(
                    in_channels,
                    out_channels,
                    3,
                    stride=2,
                    padding=1,
                    norm_cfg=norm_cfg,
                    bias=self.with_bias,
                    act_cfg=act_cfg,
                    inplace=False,
                    order=self.order,
                )
                if self.upsample == "deconv":
                    upsampler_cfg_ = dict(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        kernel_size=self.upsample_kernel,
                        stride=2,
                        padding=(self.upsample_kernel - 1) // 2,
                        output_padding=(self.upsample_kernel - 1) // 2,
                    )
                elif self.upsample == "pixel_shuffle":
                    upsampler_cfg_ = dict(
                        in_channels=out_channels,
                        out_channels=out_channels,
                        scale_factor=2,
                        upsample_kernel=self.upsample_kernel,
                    )
                elif self.upsample == "carafe":
                    upsampler_cfg_ = dict(channels=out_channels,
                                          scale_factor=2,
                                          **self.upsample_cfg)
                else:
                    # suppress warnings
                    align_corners = None if self.upsample == "nearest" else False
                    upsampler_cfg_ = dict(scale_factor=2,
                                          mode=self.upsample,
                                          align_corners=align_corners)
                upsampler_cfg_["type"] = self.upsample
                upsample_module = build_upsample_layer(upsampler_cfg_)
                extra_fpn_conv = ConvModule(
                    out_channels,
                    out_channels,
                    3,
                    padding=1,
                    norm_cfg=self.norm_cfg,
                    bias=self.with_bias,
                    act_cfg=act_cfg,
                    inplace=False,
                    order=self.order,
                )
                self.upsample_modules.append(upsample_module)
                self.fpn_convs.append(extra_fpn_conv)
                self.lateral_convs.append(extra_l_conv)