def inter_calc_dynamic(): # print(os.getcwd()) corrcoef_path = os.path.join(os.getcwd(),'bold_net') nii_path = os.path.join(path.curparent(), 'pBOLD.nii') outfolder = os.path.join(os.getcwd(), OUTFOLDER_INTER) json_path = path.fullfile("inter_attr_dynamic.json") # print(outfolder) # print(corrcoef_path) if not os.path.isdir(outfolder): os.mkdir(outfolder) inter_ac = InterAttrCalcDynamic(nii_path,corrcoef_path,outfolder,json_path) inter_ac.calc()
def intra_calc(): print(os.getcwd()) atlasobj = path.curatlas() volumename = '3mm' nii_path = os.path.join(path.curparent(), 'pBOLD.nii') outfolder = os.path.join(os.getcwd(), 'bold_net_attr_zzl') json_path = path.fullfile("intra_attr.json") print(nii_path) print(outfolder) if not os.path.isdir(outfolder): os.mkdir(outfolder) intra_ac = IntraAttrCalc(nii_path, atlasobj, outfolder, json_path) intra_ac.calc()
def intra_calc_dynamic(): # print(os.getcwd()) atlasobj = path.curatlas() volumename = '3mm' nii_path = os.path.join(path.curparent(), 'pBOLD.nii') outfolder = os.path.join(os.getcwd(), OUTFOLDER_INTRA) json_path = path.fullfile("intra_attr_dynamic.json") # print(nii_path) # print(outfolder) if not os.path.isdir(outfolder): os.mkdir(outfolder) intra_ac = IntraAttrCalcDynamic(nii_path,atlasobj,outfolder,json_path) intra_ac.calc()
import os import numpy as np import nibabel as nib from mmdps.proc import atlas # from mmdps.util.loadsave import load_nii, save_csvmat from mmdps.util import path from mmdps.proc import job if __name__ == '__main__': atlasobj = path.curatlas() volumename = '3mm' print(os.path.join(path.curparent(), 'pBOLD.nii')) print(os.getcwd()) outfolder = os.path.join(os.getcwd(), 'bold_net_attr_zzl') print(outfolder)
def gen_timeseries(self): data = self.img.get_data() atdata = self.atlasimg.get_data() timepoints = data.shape[3] timeseries = np.empty((self.atlasobj.count, timepoints)) for i, region in enumerate(self.atlasobj.regions): regiondots = data[atdata == region, :] regionts = np.mean(regiondots, axis=0) timeseries[i, :] = regionts return timeseries def gen_net(self): ts = self.gen_timeseries() save_csvmat(self.outpath('timeseries.csv'), ts) tscorr = np.corrcoef(ts) save_csvmat(self.outpath('corrcoef.csv'), tscorr) def run(self): self.gen_net() if __name__ == '__main__': atlasobj = path.curatlas() volumename = '3mm' img = load_nii(os.path.join(path.curparent(), 'pBOLD.nii')) outfolder = 'bold_net' c = Calc(atlasobj, volumename, img, outfolder) c.run()