예제 #1
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    rank, _ = get_dist_info()

    # set random seeds
    if args.seed is not None:
        if rank == 0:
            print('set random seed to', args.seed)
        set_random_seed(args.seed, deterministic=args.deterministic)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)

    loader_cfg = {
        **dict((k, cfg.data[k]) for k in ['workers_per_gpu'] if k in cfg.data),
        **dict(samples_per_gpu=1,
               drop_last=False,
               shuffle=False,
               dist=distributed),
        **cfg.data.get('test_dataloader', {})
    }

    data_loader = build_dataloader(dataset, **loader_cfg)

    # build the model and load checkpoint
    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)

    args.save_image = args.save_path is not None
    empty_cache = cfg.get('empty_cache', False)
    if not distributed:
        _ = load_checkpoint(model, args.checkpoint, map_location='cpu')
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model,
                                  data_loader,
                                  save_path=args.save_path,
                                  save_image=args.save_image)
    else:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        model = DistributedDataParallelWrapper(
            model,
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)

        device_id = torch.cuda.current_device()
        _ = load_checkpoint(
            model,
            args.checkpoint,
            map_location=lambda storage, loc: storage.cuda(device_id))
        outputs = multi_gpu_test(model,
                                 data_loader,
                                 args.tmpdir,
                                 args.gpu_collect,
                                 save_path=args.save_path,
                                 save_image=args.save_image,
                                 empty_cache=empty_cache)

    if rank == 0:
        print('')
        # print metrics
        stats = dataset.evaluate(outputs)
        for stat in stats:
            print('Eval-{}: {}'.format(stat, stats[stat]))

        # save result pickle
        if args.out:
            print('writing results to {}'.format(args.out))
            mmcv.dump(outputs, args.out)
예제 #2
0
def _dist_train(model,
                dataset,
                cfg,
                validate=False,
                logger=None,
                timestamp=None,
                meta=None):
    """Distributed training function.

    Args:
        model (nn.Module): The model to be trained.
        dataset (:obj:`Dataset`): Train dataset.
        cfg (dict): The config dict for training.
        validate (bool): Whether to do evaluation. Default: False.
        logger (logging.Logger | None): Logger for training. Default: None.
        timestamp (str | None): Local time for runner. Default: None.
        meta (dict | None): Meta dict to record some important information.
            Default: None.
    """
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]

    # step 1: give default values and override (if exist) from cfg.data
    loader_cfg = dict(
        seed=cfg.get('seed'),
        drop_last=False,
        dist=True,
        **({} if torch.__version__ != 'parrots' else dict(
            prefetch_num=2,
            pin_memory=False,
        )),
        **dict((k, cfg.data[k]) for k in [
            'samples_per_gpu',
            'workers_per_gpu',
            'shuffle',
            'seed',
            'drop_last',
            'prefetch_num',
            'pin_memory',
        ] if k in cfg.data))

    # step 2: cfg.data.train_dataloader has highest priority
    train_loader_cfg = dict(loader_cfg, **cfg.data.get('train_dataloader', {}))

    data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]

    # put model on gpus
    find_unused_parameters = cfg.get('find_unused_parameters', False)
    model = DistributedDataParallelWrapper(
        model,
        device_ids=[torch.cuda.current_device()],
        broadcast_buffers=False,
        find_unused_parameters=find_unused_parameters)

    # build runner
    optimizer = build_optimizers(model, cfg.optimizers)
    runner = IterBasedRunner(
        model,
        optimizer=optimizer,
        work_dir=cfg.work_dir,
        logger=logger,
        meta=meta)
    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp

    # register hooks
    runner.register_training_hooks(
        cfg.lr_config,
        checkpoint_config=cfg.checkpoint_config,
        log_config=cfg.log_config)

    # visual hook
    if cfg.get('visual_config', None) is not None:
        cfg.visual_config['output_dir'] = os.path.join(
            cfg.work_dir, cfg.visual_config['output_dir'])
        runner.register_hook(mmcv.build_from_cfg(cfg.visual_config, HOOKS))

    # evaluation hook
    if validate and cfg.get('evaluation', None) is not None:
        dataset = build_dataset(cfg.data.val)

        if ('val_samples_per_gpu' in cfg.data
                or 'val_workers_per_gpu' in cfg.data):
            warnings.warn('"val_samples_per_gpu/val_workers_per_gpu" have '
                          'been deprecated. Please use '
                          '"val_dataloader=dict(samples_per_gpu=1)" instead. '
                          'Details see '
                          'https://github.com/open-mmlab/mmediting/pull/201')

        val_loader_cfg = dict(
            loader_cfg,
            shuffle=False,
            drop_last=False,
            **dict((newk, cfg.data[oldk]) for oldk, newk in [
                ('val_samples_per_gpu', 'samples_per_gpu'),
                ('val_workers_per_gpu', 'workers_per_gpu'),
            ] if oldk in cfg.data),
            **cfg.data.get('val_dataloader', {}))

        data_loader = build_dataloader(dataset, **val_loader_cfg)
        save_path = osp.join(cfg.work_dir, 'val_visuals')
        runner.register_hook(
            DistEvalIterHook(
                data_loader, save_path=save_path, **cfg.evaluation))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_iters)
예제 #3
0
def _dist_train(model,
                dataset,
                cfg,
                validate=False,
                logger=None,
                timestamp=None,
                meta=None):
    """Distributed training function.

    Args:
        model (nn.Module): The model to be trained.
        dataset (:obj:`Dataset`): Train dataset.
        cfg (dict): The config dict for training.
        validate (bool): Whether to do evaluation. Default: False.
        logger (logging.Logger | None): Logger for training. Default: None.
        timestamp (str | None): Local time for runner. Default: None.
        meta (dict | None): Meta dict to record some important information.
            Default: None.
    """
    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    data_loaders = [
        build_dataloader(ds,
                         cfg.data.samples_per_gpu,
                         cfg.data.workers_per_gpu,
                         dist=True,
                         drop_last=cfg.data.get('drop_last', False),
                         seed=cfg.seed) for ds in dataset
    ]
    # put model on gpus
    find_unused_parameters = cfg.get('find_unused_parameters', False)
    model = DistributedDataParallelWrapper(
        model,
        device_ids=[torch.cuda.current_device()],
        broadcast_buffers=False,
        find_unused_parameters=find_unused_parameters)

    # build runner
    optimizer = build_optimizers(model, cfg.optimizers)
    runner = IterBasedRunner(model,
                             optimizer=optimizer,
                             work_dir=cfg.work_dir,
                             logger=logger,
                             meta=meta)
    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp

    # register hooks
    runner.register_training_hooks(cfg.lr_config,
                                   checkpoint_config=cfg.checkpoint_config,
                                   log_config=cfg.log_config)

    # visual hook
    if cfg.get('visual_config', None) is not None:
        cfg.visual_config['output_dir'] = os.path.join(
            cfg.work_dir, cfg.visual_config['output_dir'])
        runner.register_hook(mmcv.build_from_cfg(cfg.visual_config, HOOKS))

    # evaluation hook
    if validate and cfg.get('evaluation', None) is not None:
        dataset = build_dataset(cfg.data.val)
        samples_per_gpu = cfg.data.get('val_samples_per_gpu',
                                       cfg.data.samples_per_gpu)
        workers_per_gpu = cfg.data.get('val_workers_per_gpu',
                                       cfg.data.workers_per_gpu)
        data_loader = build_dataloader(dataset,
                                       samples_per_gpu=samples_per_gpu,
                                       workers_per_gpu=workers_per_gpu,
                                       dist=True,
                                       shuffle=False)
        save_path = osp.join(cfg.work_dir, 'val_visuals')
        runner.register_hook(
            DistEvalIterHook(data_loader,
                             save_path=save_path,
                             **cfg.evaluation))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_iters)
예제 #4
0
def main():
    args = parse_args()

    checkpoint_list = os.listdir(args.checkpoint_dir)

    print(checkpoint_list)

    for checkpoint in checkpoint_list:
        if '.pth' in checkpoint:

            cfg = mmcv.Config.fromfile(args.config)
            # set cudnn_benchmark
            if cfg.get('cudnn_benchmark', False):
                torch.backends.cudnn.benchmark = True
            cfg.model.pretrained = None

            # init distributed env first, since logger depends on the dist info.
            if args.launcher == 'none':
                distributed = False
            else:
                distributed = True
                init_dist(args.launcher, **cfg.dist_params)

            rank, _ = get_dist_info()

            # set random seeds
            if args.seed is not None:
                if rank == 0:
                    print('set random seed to', args.seed)
                set_random_seed(args.seed, deterministic=args.deterministic)

            # build the dataloader
            # TODO: support multiple images per gpu (only minor changes are needed)
            dataset = build_dataset(cfg.data.test)
            data_loader = build_dataloader(dataset,
                                           samples_per_gpu=1,
                                           workers_per_gpu=cfg.data.get(
                                               'val_workers_per_gpu',
                                               cfg.data.workers_per_gpu),
                                           dist=distributed,
                                           shuffle=False)

            # build the model and load checkpoint
            model = build_model(cfg.model,
                                train_cfg=None,
                                test_cfg=cfg.test_cfg)

            args.save_image = args.save_path is not None

            # distributed test
            find_unused_parameters = cfg.get('find_unused_parameters', False)
            model = DistributedDataParallelWrapper(
                model,
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False,
                find_unused_parameters=find_unused_parameters)

            device_id = torch.cuda.current_device()

            _ = load_checkpoint(
                model,
                os.path.join(args.checkpoint_dir, checkpoint),
                map_location=lambda storage, loc: storage.cuda(device_id))

            outputs = multi_gpu_test(model,
                                     data_loader,
                                     args.tmpdir,
                                     args.gpu_collect,
                                     save_path=args.save_path,
                                     save_image=args.save_image)

            if rank == 0:
                # print metrics
                stats = dataset.evaluate(outputs)
                write_file = open(
                    os.path.join(args.checkpoint_dir, 'eval_result_new.txt'),
                    'a')
                for stat in stats:
                    print('{}: Eval-{}: {}'.format(checkpoint, stat,
                                                   stats[stat]))
                    write_file.write('{}: Eval-{}: {} '.format(
                        checkpoint, stat, stats[stat]))
                write_file.write('\n')
                write_file.close()
                # save result pickle
                if args.out:
                    print('writing results to {}'.format(args.out))
                    mmcv.dump(outputs, args.out)