def __init__(self, num_data, batch_size): self.batch_size = batch_size config = OmegaConf.create({ "use_features": True, "annotations": { "train": "not_a_real_annotations_dataset", "val": "not_a_real_annotations_dataset", }, "features": { "train": "not_a_real_features_dataset", "val": "not_a_real_features_dataset", }, "dataset_config": { "simple": 0 }, }) self._num_data = num_data self._batch_size = batch_size self.config = config self.dataset_list = [] dataset_builder = MMFDatasetBuilder( "simple", functools.partial(NumbersDataset, num_examples=num_data)) dataset_builder.train_dataloader = self._get_dataloader dataset_builder.val_dataloader = self._get_dataloader dataset_builder.test_dataloader = self._get_dataloader self.datamodules = {"simple": dataset_builder}
def __init__(self, config, num_data): super().__init__(config) batch_size = config.training.batch_size config = OmegaConf.create( { "use_features": True, "annotations": { "train": "not_a_real_annotations_dataset", "val": "not_a_real_annotations_dataset", }, "features": { "train": "not_a_real_features_dataset", "val": "not_a_real_features_dataset", }, "dataset_config": {"numbers": 0}, } ) self._num_data = num_data self.batch_size = batch_size self.config = config self.dataset_list = [] dataset_builder = MMFDatasetBuilder( "numbers", functools.partial(NumbersDataset, num_examples=num_data, always_one=True), ) dataset_builder.train_dataloader = self._get_dataloader_train dataset_builder.val_dataloader = self._get_dataloader_val dataset_builder.test_dataloader = self._get_dataloader_test self.datamodules = {"numbers": dataset_builder}
def _create_dataset(self, dataset_type): dataset_builder = MMFDatasetBuilder( "vqa", functools.partial(SimpleMMFDataset, num_examples=100)) return dataset_builder.load(self.config, dataset_type)