예제 #1
0
def test_valid_boundary():

    x = [0, 0, 1, 0, 1, 1, 0, 1]
    assert not utils.valid_boundary(x, True)
    assert not utils.valid_boundary([0])
    assert utils.valid_boundary(x, False)
    x = [0, 0, 1, 0, 1, 1, 0, 1, 1]
    assert utils.valid_boundary(x, True)
예제 #2
0
파일: utils.py 프로젝트: quincylin1/mmocr-1
def boundary_iou(src, target):
    """Calculate the IOU between two boundaries.

    Args:
       src (list): Source boundary.
       target (list): Target boundary.

    Returns:
       iou (float): The iou between two boundaries.
    """
    assert utils.valid_boundary(src, False)
    assert utils.valid_boundary(target, False)
    src_poly = points2polygon(src)
    target_poly = points2polygon(target)

    return poly_iou(src_poly, target_poly)
예제 #3
0
def boundary_iou(src, target, zero_division=0):
    """Calculate the IOU between two boundaries.

    Args:
       src (list): Source boundary.
       target (list): Target boundary.
       zero_division (int|float): The return value when invalid
                                    boundary exists.

    Returns:
       iou (float): The iou between two boundaries.
    """
    assert utils.valid_boundary(src, False)
    assert utils.valid_boundary(target, False)
    src_poly = points2polygon(src)
    target_poly = points2polygon(target)

    return poly_iou(src_poly, target_poly, zero_division=zero_division)
예제 #4
0
def imshow_pred_boundary(img,
                         boundaries_with_scores,
                         labels,
                         score_thr=0,
                         boundary_color='blue',
                         text_color='blue',
                         thickness=1,
                         font_scale=0.5,
                         show=True,
                         win_name='',
                         wait_time=0,
                         out_file=None,
                         show_score=False):
    """Draw boundaries and class labels (with scores) on an image.

    Args:
        img (str or ndarray): The image to be displayed.
        boundaries_with_scores (list[list[float]]): Boundaries with scores.
        labels (list[int]): Labels of boundaries.
        score_thr (float): Minimum score of boundaries to be shown.
        boundary_color (str or tuple or :obj:`Color`): Color of boundaries.
        text_color (str or tuple or :obj:`Color`): Color of texts.
        thickness (int): Thickness of lines.
        font_scale (float): Font scales of texts.
        show (bool): Whether to show the image.
        win_name (str): The window name.
        wait_time (int): Value of waitKey param.
        out_file (str or None): The filename of the output.
        show_score (bool): Whether to show text instance score.
    """
    assert isinstance(img, (str, np.ndarray))
    assert utils.is_2dlist(boundaries_with_scores)
    assert utils.is_type_list(labels, int)
    assert utils.equal_len(boundaries_with_scores, labels)
    if len(boundaries_with_scores) == 0:
        warnings.warn('0 text found in ' + out_file)
        return

    utils.valid_boundary(boundaries_with_scores[0])
    img = mmcv.imread(img)

    scores = np.array([b[-1] for b in boundaries_with_scores])
    inds = scores > score_thr
    boundaries = [boundaries_with_scores[i][:-1] for i in np.where(inds)[0]]
    scores = [scores[i] for i in np.where(inds)[0]]
    labels = [labels[i] for i in np.where(inds)[0]]

    boundary_color = mmcv.color_val(boundary_color)
    text_color = mmcv.color_val(text_color)
    font_scale = 0.5

    for boundary, score, label in zip(boundaries, scores, labels):
        boundary_int = np.array(boundary).astype(np.int32)

        cv2.polylines(img, [boundary_int.reshape(-1, 1, 2)],
                      True,
                      color=boundary_color,
                      thickness=thickness)

        if show_score:
            label_text = f'{score:.02f}'
            cv2.putText(img, label_text,
                        (boundary_int[0], boundary_int[1] - 2),
                        cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return img
예제 #5
0
def eval_hmean(results,
               img_infos,
               ann_infos,
               metrics={'hmean-iou'},
               score_thr=0.3,
               rank_list=None,
               logger=None,
               **kwargs):
    """Evaluation in hmean metric.

    Args:
        results (list[dict]): Each dict corresponds to one image,
            containing the following keys: boundary_result
        img_infos (list[dict]): Each dict corresponds to one image,
            containing the following keys: filename, height, width
        ann_infos (list[dict]): Each dict corresponds to one image,
            containing the following keys: masks, masks_ignore
        score_thr (float): Score threshold of prediction map.
        metrics (set{str}): Hmean metric set, should be one or all of
            {'hmean-iou', 'hmean-ic13'}
    Returns:
        dict[str: float]
    """
    assert utils.is_type_list(results, dict)
    assert utils.is_type_list(img_infos, dict)
    assert utils.is_type_list(ann_infos, dict)
    assert len(results) == len(img_infos) == len(ann_infos)
    assert isinstance(metrics, set)

    gts, gts_ignore = get_gt_masks(ann_infos)

    preds = []
    pred_scores = []
    for result in results:
        _, texts, scores = extract_boundary(result)
        if len(texts) > 0:
            assert utils.valid_boundary(texts[0], False)
        valid_texts, valid_text_scores = filter_2dlist_result(
            texts, scores, score_thr)
        preds.append(valid_texts)
        pred_scores.append(valid_text_scores)

    eval_results = {}
    for metric in metrics:
        msg = f'Evaluating {metric}...'
        if logger is None:
            msg = '\n' + msg
        print_log(msg, logger=logger)
        best_result = dict(hmean=-1)
        for iter in range(3, 10):
            thr = iter * 0.1
            if thr < score_thr:
                continue
            top_preds = select_top_boundary(preds, pred_scores, thr)
            if metric == 'hmean-iou':
                result, img_result = hmean_iou.eval_hmean_iou(
                    top_preds, gts, gts_ignore)
            elif metric == 'hmean-ic13':
                result, img_result = hmean_ic13.eval_hmean_ic13(
                    top_preds, gts, gts_ignore)
            else:
                raise NotImplementedError
            if rank_list is not None:
                output_ranklist(img_result, img_infos, rank_list)

            print_log('thr {0:.2f}, recall: {1[recall]:.3f}, '
                      'precision: {1[precision]:.3f}, '
                      'hmean: {1[hmean]:.3f}'.format(thr, result),
                      logger=logger)
            if result['hmean'] > best_result['hmean']:
                best_result = result
        eval_results[metric + ':recall'] = best_result['recall']
        eval_results[metric + ':precision'] = best_result['precision']
        eval_results[metric + ':hmean'] = best_result['hmean']
    return eval_results
예제 #6
0
def eval_hmean(results,
               img_infos,
               ann_infos,
               metrics={'hmean-iou'},
               score_thr=None,
               min_score_thr=0.3,
               max_score_thr=0.9,
               step=0.1,
               rank_list=None,
               logger=None,
               **kwargs):
    """Evaluation in hmean metric. It conducts grid search over a range of
    boundary score thresholds and reports the best result.

    Args:
        results (list[dict]): Each dict corresponds to one image,
            containing the following keys: boundary_result
        img_infos (list[dict]): Each dict corresponds to one image,
            containing the following keys: filename, height, width
        ann_infos (list[dict]): Each dict corresponds to one image,
            containing the following keys: masks, masks_ignore
        score_thr (float): Deprecated. Please use min_score_thr instead.
        min_score_thr (float): Minimum score threshold of prediction map.
        max_score_thr (float): Maximum score threshold of prediction map.
        step (float): The spacing between score thresholds.
        metrics (set{str}): Hmean metric set, should be one or all of
            {'hmean-iou', 'hmean-ic13'}
    Returns:
        dict[str: float]
    """
    assert utils.is_type_list(results, dict)
    assert utils.is_type_list(img_infos, dict)
    assert utils.is_type_list(ann_infos, dict)

    if score_thr:
        warnings.warn('score_thr is deprecated. Please use min_score_thr '
                      'instead.')
        min_score_thr = score_thr

    assert 0 <= min_score_thr <= max_score_thr <= 1
    assert 0 <= step <= 1
    assert len(results) == len(img_infos) == len(ann_infos)
    assert isinstance(metrics, set)

    min_score_thr = float(min_score_thr)
    max_score_thr = float(max_score_thr)
    step = float(step)

    gts, gts_ignore = get_gt_masks(ann_infos)

    preds = []
    pred_scores = []
    for result in results:
        _, texts, scores = extract_boundary(result)
        if len(texts) > 0:
            assert utils.valid_boundary(texts[0], False)
        valid_texts, valid_text_scores = filter_2dlist_result(
            texts, scores, min_score_thr)
        preds.append(valid_texts)
        pred_scores.append(valid_text_scores)

    eval_results = {}

    for metric in metrics:
        msg = f'Evaluating {metric}...'
        if logger is None:
            msg = '\n' + msg
        print_log(msg, logger=logger)
        best_result = dict(hmean=-1)
        for thr in np.arange(min_score_thr, min(max_score_thr + step, 1.0),
                             step):
            top_preds = select_top_boundary(preds, pred_scores, thr)
            if metric == 'hmean-iou':
                result, img_result = hmean_iou.eval_hmean_iou(
                    top_preds, gts, gts_ignore)
            elif metric == 'hmean-ic13':
                result, img_result = hmean_ic13.eval_hmean_ic13(
                    top_preds, gts, gts_ignore)
            else:
                raise NotImplementedError
            if rank_list is not None:
                output_ranklist(img_result, img_infos, rank_list)

            print_log(
                'thr {0:.2f}, recall: {1[recall]:.3f}, '
                'precision: {1[precision]:.3f}, '
                'hmean: {1[hmean]:.3f}'.format(thr, result),
                logger=logger)
            if result['hmean'] > best_result['hmean']:
                best_result = result
        eval_results[metric + ':recall'] = best_result['recall']
        eval_results[metric + ':precision'] = best_result['precision']
        eval_results[metric + ':hmean'] = best_result['hmean']
    return eval_results