meg=True, eeg=False, eog=True, ecg=True, stim=False, exclude=raw.info['bads']) ############################################################################### # Setup ICA seed decompose data, then access and plot sources. # Instead of the actual number of components here we pass a float value # between 0 and 1 to select n_components by a percentage of # explained variance. ica = ICA(n_components=0.90, max_n_components=100, noise_cov=None, random_state=0) print ica # get epochs tmin, tmax, event_id = -0.2, 0.5, 1 # baseline = None baseline = (None, 0) reject = None events = mne.find_events(raw, stim_channel='STI 014') epochs = mne.Epochs(raw, events, event_id, tmin, tmax,
raw = Raw(raw_fname, preload=True) picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, eog=False, stim=False, exclude=raw.info['bads']) ############################################################################### # Setup ICA seed decompose data, then access and plot sources. # Sign and order of components is non deterministic. # setting the random state to 0 makes the solution reproducible. # Instead of the actual number of components we pass a float value # between 0 and 1 to select n_components by a percentage of # explained variance. ica = ICA(n_components=0.90, max_n_components=100, noise_cov=None, random_state=0) print ica # 1 minute exposure should be sufficient for artifact detection. # However, rejection performance may significantly improve when using # the entire data range start, stop = raw.time_as_index([100, 160]) # decompose sources for raw data ica.decompose_raw(raw, start=start, stop=stop, picks=picks) print ica sources = ica.get_sources_raw(raw, start=start, stop=stop) # setup reasonable time window for inspection start_plot, stop_plot = raw.time_as_index([100, 103])
eeg=False, eog=False, stim=False, exclude=raw.info['bads']) ############################################################################### # Setup ICA seed decompose data, then access and plot sources. # Sign and order of components is non deterministic. # setting the random state to 0 makes the solution reproducible. # Instead of the actual number of components we pass a float value # between 0 and 1 to select n_components by a percentage of # explained variance. ica = ICA(n_components=0.90, max_n_components=100, noise_cov=None, random_state=0) # For maximum rejection performance we will compute the decomposition on # the entire time range # decompose sources for raw data, select n_components by explained variance ica.decompose_raw(raw, start=None, stop=None, picks=picks) print ica # setup reasonable time window for inspection start_plot, stop_plot = raw.time_as_index([100, 103]) # plot components ica.plot_sources_raw(raw, start=start_plot, stop=stop_plot)
data_path = sample.data_path('..') raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = Raw(raw_fname, preload=True) picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, eog=True, ecg=True, stim=False, exclude=raw.info['bads']) ############################################################################### # Setup ICA seed decompose data, then access and plot sources. # Instead of the actual number of components here we pass a float value # between 0 and 1 to select n_components by a percentage of # explained variance. ica = ICA(n_components=0.90, max_n_components=100, noise_cov=None, random_state=0) print ica # get epochs tmin, tmax, event_id = -0.2, 0.5, 1 # baseline = None baseline = (None, 0) reject = None events = mne.find_events(raw, stim_channel='STI 014') epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=baseline, preload=True, reject=reject) # fit sources from epochs or from raw (both works for epochs) ica.decompose_epochs(epochs)
raw = Raw(raw_fname, preload=True) picks = mne.fiff.pick_types(raw.info, meg=True, eeg=False, eog=False, stim=False, exclude=raw.info['bads']) ############################################################################### # Setup ICA seed decompose data, then access and plot sources. # Sign and order of components is non deterministic. # setting the random state to 0 makes the solution reproducible. # Instead of the actual number of components we pass a float value # between 0 and 1 to select n_components by a percentage of # explained variance. ica = ICA(n_components=0.90, max_n_components=100, noise_cov=None, random_state=0) # For maximum rejection performance we will compute the decomposition on # the entire time range # decompose sources for raw data, select n_components by explained variance ica.decompose_raw(raw, start=None, stop=None, picks=picks) print ica sources = ica.get_sources_raw(raw) # setup reasonable time window for inspection start_plot, stop_plot = raw.time_as_index([100, 103]) # plot components ica.plot_sources_raw(raw, start=start_plot, stop=stop_plot)