예제 #1
0
def test_lcmv_raw():
    """Test LCMV with raw data."""
    raw, _, _, _, noise_cov, label, forward, _, _, _ =\
        _get_data(all_forward=False, epochs=False, data_cov=False)

    tmin, tmax = 0, 20
    start, stop = raw.time_as_index([tmin, tmax])

    # use only the left-temporal MEG channels for LCMV
    data_cov = mne.compute_raw_covariance(raw, tmin=tmin, tmax=tmax)
    filters = make_lcmv(raw.info,
                        forward,
                        data_cov,
                        reg=0.01,
                        noise_cov=noise_cov,
                        label=label)
    stc = apply_lcmv_raw(raw,
                         filters,
                         start=start,
                         stop=stop,
                         max_ori_out='signed')

    assert_array_almost_equal(np.array([tmin, tmax]),
                              np.array([stc.times[0], stc.times[-1]]),
                              decimal=2)

    # make sure we get an stc with vertices only in the lh
    vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
    assert len(stc.vertices[0]) == len(
        np.intersect1d(vertno[0], label.vertices))
    assert len(stc.vertices[1]) == 0
예제 #2
0
    def _update(self):
        t1 = time.time()
        input_array = self.input_node.output
        raw_array = mne.io.RawArray(input_array,
                                    self._mne_info,
                                    verbose='ERROR')

        raw_array.pick_types(eeg=True, meg=False, stim=False, exclude='bads')
        raw_array.set_eeg_reference(ref_channels='average', projection=True)
        t2 = time.time()
        self.logger.debug('Prepare arrays in {:.1f} ms'.format(
            (t2 - t1) * 1000))

        if self.is_adaptive:
            self._update_covariance_matrix(input_array)
            t1 = time.time()
            self._filters = make_lcmv(info=self._mne_info,
                                      forward=self.fwd_surf,
                                      data_cov=self._Rxx,
                                      reg=0.5,
                                      pick_ori='max-power',
                                      weight_norm='unit-noise-gain',
                                      reduce_rank=False)
            t2 = time.time()
            self.logger.debug('Assembled lcmv instance in {:.1f} ms'.format(
                (t2 - t1) * 1000))

        self._filters['source_nn'] = []
        t1 = time.time()
        stc = apply_lcmv_raw(raw=raw_array,
                             filters=self._filters,
                             max_ori_out='signed')
        t2 = time.time()
        self.logger.debug('Applied lcmv inverse in {:.1f} ms'.format(
            (t2 - t1) * 1000))

        output = stc.data
        t1 = time.time()
        if self.fixed_orientation is True:
            if self.output_type == 'power':
                output = output**2
        else:
            vertex_count = self.fwd_surf['nsource']
            output = np.sum(np.power(output, 2).reshape((vertex_count, 3, -1)),
                            axis=1)
            if self.output_type == 'activation':
                output = np.sqrt(output)

        self.output = output
        t2 = time.time()
        self.logger.debug('Finalized in {:.1f} ms'.format((t2 - t1) * 1000))
예제 #3
0
def test_lcmv_raw():
    """Test LCMV with raw data."""
    raw, _, _, _, noise_cov, label, forward, _, _, _ =\
        _get_data(all_forward=False, epochs=False, data_cov=False)

    tmin, tmax = 0, 20
    start, stop = raw.time_as_index([tmin, tmax])

    # use only the left-temporal MEG channels for LCMV
    data_cov = mne.compute_raw_covariance(raw, tmin=tmin, tmax=tmax)
    filters = make_lcmv(raw.info, forward, data_cov, reg=0.01,
                        noise_cov=noise_cov, label=label)
    stc = apply_lcmv_raw(raw, filters, start=start, stop=stop,
                         max_ori_out='signed')

    assert_array_almost_equal(np.array([tmin, tmax]),
                              np.array([stc.times[0], stc.times[-1]]),
                              decimal=2)

    # make sure we get an stc with vertices only in the lh
    vertno = [forward['src'][0]['vertno'], forward['src'][1]['vertno']]
    assert len(stc.vertices[0]) == len(np.intersect1d(vertno[0],
                                                      label.vertices))
    assert len(stc.vertices[1]) == 0
예제 #4
0
def test_make_lcmv(tmpdir, reg, proj):
    """Test LCMV with evoked data and single trials."""
    raw, epochs, evoked, data_cov, noise_cov, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol = _get_data(proj=proj)

    for fwd in [forward, forward_vol]:
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov)
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc.crop(0.02, None)

        stc_pow = np.sum(np.abs(stc.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = stc.data[idx]
        tmax = stc.times[np.argmax(max_stc)]

        assert 0.08 < tmax < 0.15, tmax
        assert 0.9 < np.max(max_stc) < 3.5, np.max(max_stc)

        if fwd is forward:
            # Test picking normal orientation (surface source space only).
            filters = make_lcmv(evoked.info, forward_surf_ori, data_cov,
                                reg=reg, noise_cov=noise_cov,
                                pick_ori='normal', weight_norm=None)
            stc_normal = apply_lcmv(evoked, filters, max_ori_out='signed')
            stc_normal.crop(0.02, None)

            stc_pow = np.sum(np.abs(stc_normal.data), axis=1)
            idx = np.argmax(stc_pow)
            max_stc = stc_normal.data[idx]
            tmax = stc_normal.times[np.argmax(max_stc)]

            lower = 0.04 if proj else 0.025
            assert lower < tmax < 0.14, tmax
            lower = 3e-7 if proj else 2e-7
            assert lower < np.max(max_stc) < 3e-6, np.max(max_stc)

            # No weight normalization was applied, so the amplitude of normal
            # orientation results should always be smaller than free
            # orientation results.
            assert (np.abs(stc_normal.data) <= stc.data).all()

        # Test picking source orientation maximizing output source power
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov, pick_ori='max-power')
        stc_max_power = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_max_power.crop(0.02, None)
        stc_pow = np.sum(np.abs(stc_max_power.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = np.abs(stc_max_power.data[idx])
        tmax = stc.times[np.argmax(max_stc)]

        lower = 0.08 if proj else 0.04
        assert lower < tmax < 0.15, tmax
        assert 0.8 < np.max(max_stc) < 3., np.max(max_stc)

        stc_max_power.data[:, :] = np.abs(stc_max_power.data)

        if fwd is forward:
            # Maximum output source power orientation results should be
            # similar to free orientation results in areas with channel
            # coverage
            label = mne.read_label(fname_label)
            mean_stc = stc.extract_label_time_course(label, fwd['src'],
                                                     mode='mean')
            mean_stc_max_pow = \
                stc_max_power.extract_label_time_course(label, fwd['src'],
                                                        mode='mean')
            assert_array_less(np.abs(mean_stc - mean_stc_max_pow), 1.0)

        # Test NAI weight normalization:
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov, pick_ori='max-power',
                            weight_norm='nai')
        stc_nai = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_nai.crop(0.02, None)

        # Test whether unit-noise-gain solution is a scaled version of NAI
        pearsoncorr = np.corrcoef(np.concatenate(np.abs(stc_nai.data)),
                                  np.concatenate(stc_max_power.data))
        assert_almost_equal(pearsoncorr[0, 1], 1.)

    # Test if spatial filter contains src_type
    assert 'src_type' in filters

    # __repr__
    assert len(evoked.ch_names) == 22
    assert len(evoked.info['projs']) == (3 if proj else 0)
    assert len(evoked.info['bads']) == 2
    rank = 17 if proj else 20
    assert 'LCMV' in repr(filters)
    assert 'unknown subject' not in repr(filters)
    assert '4157 vert' in repr(filters)
    assert '20 ch' in repr(filters)
    assert 'rank %s' % rank in repr(filters)

    # I/O
    fname = op.join(str(tmpdir), 'filters.h5')
    with pytest.warns(RuntimeWarning, match='-lcmv.h5'):
        filters.save(fname)
    filters_read = read_beamformer(fname)
    assert isinstance(filters, Beamformer)
    assert isinstance(filters_read, Beamformer)
    # deal with object_diff strictness
    filters_read['rank'] = int(filters_read['rank'])
    filters['rank'] = int(filters['rank'])
    assert object_diff(filters, filters_read) == ''

    # Test if fixed forward operator is detected when picking normal or
    # max-power orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_fixed, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_fixed, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='max-power')

    # Test if non-surface oriented forward operator is detected when picking
    # normal orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')

    # Test if volume forward operator is detected when picking normal
    # orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_vol, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')

    # Test if missing of noise covariance matrix is detected when more than
    # one channel type is present in the data
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_vol,
                  data_cov=data_cov, reg=0.01, noise_cov=None,
                  pick_ori='max-power')

    # Test if wrong channel selection is detected in application of filter
    evoked_ch = deepcopy(evoked)
    evoked_ch.pick_channels(evoked_ch.ch_names[1:])
    filters = make_lcmv(evoked.info, forward_vol, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    pytest.raises(ValueError, apply_lcmv, evoked_ch, filters,
                  max_ori_out='signed')

    # Test if discrepancies in channel selection of data and fwd model are
    # handled correctly in apply_lcmv
    # make filter with data where first channel was removed
    filters = make_lcmv(evoked_ch.info, forward_vol, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    # applying that filter to the full data set should automatically exclude
    # this channel from the data
    # also test here that no warnings are thrown - implemented to check whether
    # src should not be None warning occurs
    with pytest.warns(None) as w:
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert len(w) == 0
    # the result should be equal to applying this filter to a dataset without
    # this channel:
    stc_ch = apply_lcmv(evoked_ch, filters, max_ori_out='signed')
    assert_array_almost_equal(stc.data, stc_ch.data)

    # Test if non-matching SSP projection is detected in application of filter
    if proj:
        raw_proj = deepcopy(raw)
        raw_proj.del_proj()
        with pytest.raises(ValueError, match='do not match the projections'):
            apply_lcmv_raw(raw_proj, filters, max_ori_out='signed')

    # Test if spatial filter contains src_type
    assert 'src_type' in filters

    # check whether a filters object without src_type throws expected warning
    del filters['src_type']  # emulate 0.16 behaviour to cause warning
    with pytest.warns(RuntimeWarning, match='spatial filter does not contain '
                      'src_type'):
        apply_lcmv(evoked, filters, max_ori_out='signed')

    # Now test single trial using fixed orientation forward solution
    # so we can compare it to the evoked solution
    filters = make_lcmv(epochs.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    stcs = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')
    stcs_ = apply_lcmv_epochs(epochs, filters, return_generator=True,
                              max_ori_out='signed')
    assert_array_equal(stcs[0].data, next(stcs_).data)

    epochs.drop_bad()
    assert (len(epochs.events) == len(stcs))

    # average the single trial estimates
    stc_avg = np.zeros_like(stcs[0].data)
    for this_stc in stcs:
        stc_avg += this_stc.data
    stc_avg /= len(stcs)

    # compare it to the solution using evoked with fixed orientation
    filters = make_lcmv(evoked.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    stc_fixed = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert_array_almost_equal(stc_avg, stc_fixed.data)

    # use a label so we have few source vertices and delayed computation is
    # not used
    filters = make_lcmv(epochs.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov, label=label)
    stcs_label = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')

    assert_array_almost_equal(stcs_label[0].data, stcs[0].in_label(label).data)

    # Test condition where the filters weights are zero. There should not be
    # any divide-by-zero errors
    zero_cov = data_cov.copy()
    zero_cov['data'][:] = 0
    filters = make_lcmv(epochs.info, forward_fixed, zero_cov, reg=0.01,
                        noise_cov=noise_cov)
    assert_array_equal(filters['weights'], 0)

    # Test condition where one channel type is picked
    # (avoid "grad data rank (13) did not match the noise rank (None)")
    data_cov_grad = pick_channels_cov(
        data_cov, [ch_name for ch_name in epochs.info['ch_names']
                   if ch_name.endswith(('2', '3'))])
    assert len(data_cov_grad['names']) > 4
    make_lcmv(epochs.info, forward_fixed, data_cov_grad, reg=0.01,
              noise_cov=noise_cov)
예제 #5
0
def _compute_LCMV_inverse_solution(raw_filename, sbj_id, subjects_dir,
                                   fwd_filename, cov_fname, parc='aparc',
                                   all_src_space=False, ROIs_mean=True,
                                   is_fixed=False):
    """
    Compute the inverse solution on raw data by LCMV and return the average
    time series computed in the N_r regions of the source space defined by
    the specified cortical parcellation

    Inputs
        raw_filename : str
            filename of the raw data
        sbj_id : str
            subject name
        subjects_dir : str
            Freesurfer directory
        fwd_filename : str
            filename of the forward operator
        cov_filename : str
            filename of the noise covariance matrix
        parc: str
            the parcellation defining the ROIs atlas in the source space
        all_src_space: bool
            if True we compute the inverse for all points of the s0urce space
        ROIs_mean: bool
            if True we compute the mean of estimated time series on ROIs


    Outputs
        ts_file : str
            filename of the file where are saved the estimated time series
        labels_file : str
            filename of the file where are saved the ROIs of the parcellation
        label_names_file : str
            filename of the file where are saved the name of the ROIs of the
            parcellation
        label_coords_file : str
            filename of the file where are saved the coordinates of the
            centroid of the ROIs of the parcellation

    """
    print(('\n*** READ raw filename %s ***\n' % raw_filename))
    raw = read_raw_fif(raw_filename, preload=True)

    subj_path, basename, ext = split_f(raw_filename)

    print(('\n*** READ noise covariance %s ***\n' % cov_fname))
    noise_cov = mne.read_cov(cov_fname)

    print(('\n*** READ FWD SOL %s ***\n' % fwd_filename))
    forward = mne.read_forward_solution(fwd_filename)
    forward = mne.convert_forward_solution(forward, surf_ori=True)

    # compute data covariance matrix
#    reject = _create_reject_dict(raw.info)
    picks = pick_types(raw.info, meg=True, ref_meg=False, exclude='bads')
    data_cov = mne.compute_raw_covariance(raw, picks=picks)

    # compute LCMV filters
    filters = make_lcmv(raw.info, forward, data_cov, reg=0.05,
                        noise_cov=noise_cov, pick_ori='normal',
                        weight_norm='nai', depth=0.8)
    # apply spatial filter
    stc = apply_lcmv_raw(raw, filters, max_ori_out='signed')

    ts_file, label_ts, labels_file, label_names_file, label_coords_file = \
        _process_stc(stc, basename, sbj_id, subjects_dir, parc, forward,
                     False, is_fixed, all_src_space=False, ROIs_mean=True)

    return ts_file, labels_file, label_names_file, \
        label_coords_file
예제 #6
0
def run_correlation(subjects_dir, subject, volume_spacing, freq, ortho_bool):

    num_threads(8)
    ortho_flag = str(ortho_bool)
    frequency = str(freq)
    DATA_DIR = Path(f'{subjects_dir}', f'{subject}', 'mne_files')
    eye_proj1 = f'{DATA_DIR}/{subject}_eyes1-proj.fif.gz'
    eye_proj2 = f'{DATA_DIR}/{subject}_eyes2-proj.fif.gz'
    fname_meg = f'{DATA_DIR}/{subject}_ses-rest_task-rest.fif'
    t1_fname = os.path.join(subjects_dir, subject, 'mri', 'T1.mgz')
    heartbeat_proj = f'{DATA_DIR}/{subject}_heartbeat-proj.fif.gz'
    fwd_fname = f'{DATA_DIR}/{subject}_{volume_spacing}-fwd.fif.gz'
    src_fname = f'{DATA_DIR}/{subject}_{volume_spacing}-src.fif.gz'
    cov_fname = f'{DATA_DIR}/{subject}-cov_{volume_spacing}.fif.gz'
    raw_cov_fname = f'{DATA_DIR}/{subject}-rawcov_{volume_spacing}.fif.gz'
    raw_proj = f'{DATA_DIR}/{subject}_ses-rest_task-rest_proj.fif.gz'
    source_voxel_coords = f'{DATA_DIR}/{subject}_coords_{volume_spacing}.pkl'
    corr_file_acLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_acLeft.npy'
    corr_file_scLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_scLeft.npy'
    corr_file_vcLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_vcLeft.npy'
    corr_file_mtLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_mtLeft.npy'
    corr_file_mtlLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_mtlLeft.npy'
    corr_file_smcLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_smcLeft.npy'
    corr_file_lpcLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_lpcLeft.npy'
    corr_file_dpfcLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_dpfcLeft.npy'
    corr_file_tmpcLeft = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_tmpcLeft.npy'

    corr_file_acRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_acRight.npy'
    corr_file_scRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_scRight.npy'
    corr_file_vcRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_vcRight.npy'
    corr_file_mtRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_mtRight.npy'
    corr_file_mtlRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_mtlRight.npy'
    corr_file_smcRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_smcRight.npy'
    corr_file_lpcRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_lpcRight.npy'
    corr_file_dpfcRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_dpfcRight.npy'
    corr_file_tmpcRight = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_tmpcRight.npy'

    corr_file_mpfc = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_mpfc.npy'
    corr_file_sma = f'{DATA_DIR}/{subject}_{ortho_flag}_{volume_spacing}_{frequency}_sma.npy'

    check_for_files = []
    check_for_files.append(corr_file_acLeft)
    check_for_files.append(corr_file_scLeft)
    check_for_files.append(corr_file_vcLeft)
    check_for_files.append(corr_file_mtLeft)
    check_for_files.append(corr_file_mtlLeft)
    check_for_files.append(corr_file_smcLeft)
    check_for_files.append(corr_file_lpcLeft)
    check_for_files.append(corr_file_dpfcLeft)
    check_for_files.append(corr_file_tmpcLeft)

    check_for_files.append(corr_file_acRight)
    check_for_files.append(corr_file_scRight)
    check_for_files.append(corr_file_vcRight)
    check_for_files.append(corr_file_mtRight)
    check_for_files.append(corr_file_mtlRight)
    check_for_files.append(corr_file_smcRight)
    check_for_files.append(corr_file_lpcRight)
    check_for_files.append(corr_file_dpfcRight)
    check_for_files.append(corr_file_tmpcRight)

    check_for_files.append(corr_file_mpfc)
    check_for_files.append(corr_file_sma)


    file_exist = [f for f in check_for_files if os.path.isfile(f)]
    file_not_exist = list(set(file_exist) ^ set(check_for_files))

    if not file_not_exist:
        print('SC, AC, VC correlation files exists...')

    else:
        trans = f'/home/senthilp/caesar/camcan/cc700/camcan_coreg-master/trans/{subject}-trans.fif' # The transformation file obtained by coregistration
        file_trans = pathlib.Path(trans)
        file_ss = pathlib.Path(src_fname)
        file_fm = pathlib.Path(fwd_fname)
        file_proj = pathlib.Path(raw_proj)
        file_cov = pathlib.Path(cov_fname)
        file_rawcov = pathlib.Path(raw_cov_fname)
        t1 = nib.load(t1_fname)

        if not file_trans.exists():
            print (f'{trans} File doesnt exist...')
            sys.exit(0)

        #info = mne.io.read_info(fname_meg)
        # plot_registration(info, trans, subject, subjects_dir)
        if not file_ss.exists():

            src = compute_SourceSpace(subject, subjects_dir, src_fname, source_voxel_coords, plot=True, ss='volume', 
                                volume_spacing=volume_spacing)
            seed_l_sc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['SSC_Left'])
            seed_r_sc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['SSC_Right'])
            seed_l_ac = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['AC_Left'])
            seed_r_ac = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['AC_Right'])
            seed_l_vc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['VC_Left'])
            seed_r_vc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['VC_Right'])
            seed_l_mt = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['MT+_Left'])
            seed_r_mt = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['MT+_Right'])
            seed_l_mtl = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['MTL_Left'])
            seed_r_mtl = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['MTL_Right'])
            seed_l_smc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['SMC_Left'])
            seed_r_smc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['SMC_Right'])
            seed_l_lpc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['LPC_Left'])
            seed_r_lpc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['LPC_Right'])
            seed_l_dpfc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['DPFC_Left'])
            seed_r_dpfc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['DPFC_Right'])
            seed_l_tmpc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['TMPC_Left'])
            seed_r_tmpc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['TMPC_Right'])

            seed_mpfc = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['MPFC_MidBrain'])
            seed_sma = MNI_to_MRI(subject, subjects_dir, t1, ROI_mni['SMA_MidBrain'])

            src_inuse = np.where(src[0]['inuse'] == 1)
            loc_l_sc = src_inuse[0][0]
            loc_r_sc = src_inuse[0][1]
            loc_l_ac = src_inuse[0][2]
            loc_r_ac = src_inuse[0][3]
            loc_l_vc = src_inuse[0][4]
            loc_r_vc = src_inuse[0][5]
            loc_l_mt = src_inuse[0][6]
            loc_r_mt = src_inuse[0][7]
            loc_l_mtl = src_inuse[0][8]
            loc_r_mtl = src_inuse[0][9]
            loc_l_smc = src_inuse[0][10]
            loc_r_smc = src_inuse[0][11]
            loc_l_lpc = src_inuse[0][12]
            loc_r_lpc = src_inuse[0][13]
            loc_l_dpfc = src_inuse[0][14]
            loc_r_dpfc = src_inuse[0][15]
            loc_l_tmpc = src_inuse[0][16]
            loc_r_tmpc = src_inuse[0][17]
            loc_mpfc = src_inuse[0][18]
            loc_sma = src_inuse[0][19]
            src[0]['rr'][loc_l_sc] = seed_l_sc
            src[0]['rr'][loc_r_sc] = seed_r_sc
            src[0]['rr'][loc_l_ac] = seed_l_ac
            src[0]['rr'][loc_r_ac] = seed_r_ac
            src[0]['rr'][loc_l_vc] = seed_l_vc
            src[0]['rr'][loc_r_vc] = seed_r_vc
            src[0]['rr'][loc_l_mt] = seed_l_mt
            src[0]['rr'][loc_r_mt] = seed_r_mt
            src[0]['rr'][loc_l_mtl] = seed_l_mtl
            src[0]['rr'][loc_r_mtl] = seed_r_mtl
            src[0]['rr'][loc_l_smc] = seed_l_smc
            src[0]['rr'][loc_r_smc] = seed_r_smc
            src[0]['rr'][loc_l_lpc] = seed_l_lpc
            src[0]['rr'][loc_r_lpc] = seed_r_lpc
            src[0]['rr'][loc_l_dpfc] = seed_l_dpfc
            src[0]['rr'][loc_r_dpfc] = seed_r_dpfc
            src[0]['rr'][loc_l_tmpc] = seed_l_tmpc
            src[0]['rr'][loc_r_tmpc] = seed_r_tmpc
            src[0]['rr'][loc_mpfc] = seed_mpfc
            src[0]['rr'][loc_sma] = seed_sma
            src.save(src_fname, overwrite=True)
        src = mne.read_source_spaces(src_fname)
        #view_SS_brain(subject, subjects_dir, src)

        if not file_fm.exists():
            forward_model(subject, subjects_dir, fname_meg, trans, src, fwd_fname)
        fwd = mne.read_forward_solution(fwd_fname)

        # sensitivty_plot(subject, subjects_dir, fwd)
        raw = mne.io.read_raw_fif(fname_meg, verbose='error', preload=True)

        srate = raw.info['sfreq']
        n_time_samps = raw.n_times
        time_secs = raw.times
        ch_names = raw.ch_names
        n_chan = len(ch_names)
        freq_res =  srate/n_time_samps
        print('\n')
        print('-------------------------- Data summary-------------------------------')
        print(f'Subject {subject}')
        print(f"Frequency resolution {freq_res} Hz")
        print(f"The first few channel names are {ch_names[:3]}")
        print(f"The last time sample at {time_secs[-1]} seconds.")
        print(f"Sampling Frequency (No of time points/sec) {srate} Hz")
        print(f"Miscellaneous acquisition info {raw.info['description']}")
        print(f"Bad channels marked during data acquisition {raw.info['bads']}")
        print(f"Convert time in sec ( 60s ) to ingeter index {raw.time_as_index(60)}") # Convert time to indices
        print(f"The raw data object has {n_time_samps} time samples and {n_chan} channels.")
        print('------------------------------------------------------------------------')
        print('\n')
        # raw.plot(n_channels=10, scalings='auto', title='Data from arrays', show=True, block=True)
        if not file_proj.exists():
            projs_ecg, _ = compute_proj_ecg(raw, n_grad=1, n_mag=2, ch_name='ECG063')
            projs_eog1, _ = compute_proj_eog(raw, n_grad=1, n_mag=2, ch_name='EOG061')
            projs_eog2, _ = compute_proj_eog(raw, n_grad=1, n_mag=2, ch_name='EOG062')
            if projs_ecg is not None:
                mne.write_proj(heartbeat_proj, projs_ecg) # Saving projectors
                raw.info['projs'] += projs_ecg
            if projs_eog1 is not None:
                mne.write_proj(eye_proj1, projs_eog1)
                raw.info['projs'] += projs_eog1
            if projs_eog2 is not None:
                mne.write_proj(eye_proj2, projs_eog2)
                raw.info['projs'] += projs_eog2
            raw.apply_proj()
            raw.save(raw_proj, proj=True, overwrite=True)
        print(raw_proj)
        raw_proj_applied = mne.io.read_raw_fif(raw_proj, verbose='error', preload=True)


        print(f'High-pass filtering data at 0.5 Hz')
        raw_proj_applied.filter(l_freq=0.5, h_freq=None, method='iir')

        if not file_cov.exists():
            cov = mne.compute_raw_covariance(raw_proj_applied) # compute before band-pass of interest
            mne.write_cov(cov_fname, cov)
        cov = mne.read_cov(cov_fname) 

        # cov.plot(raw.info, proj=True, exclude='bads', show_svd=False
        # raw_proj_applied.crop(tmax=10)
        
        do_epochs = False

        l_freq = freq-2.0
        h_freq = freq+2.0
        print(f'Band pass filter data [{l_freq}, {h_freq}]')
        raw_proj_filtered = raw_proj_applied.filter(l_freq=l_freq, h_freq=h_freq)

        if do_epochs:
            print('Segmenting raw data...')
            events = mne.make_fixed_length_events(raw_proj_filtered, duration=5.)
            raw_proj_filtered = mne.Epochs(raw_proj_filtered, events=events, tmin=0, tmax=5.,
                                            baseline=None, preload=True)
            data_cov = mne.compute_covariance(raw_proj_filtered)         
        else:
            if not file_rawcov.exists():
                data_cov = mne.compute_raw_covariance(raw_proj_filtered)
                mne.write_cov(raw_cov_fname, data_cov)
            else:
                data_cov = mne.read_cov(file_rawcov)

        filters = make_lcmv(raw_proj_filtered.info, fwd, data_cov, 0.05, cov,
                            pick_ori='max-power', weight_norm='nai')
        raw_proj_filtered_comp = raw_proj_filtered.apply_hilbert()

        if do_epochs:
            stcs = apply_lcmv_epochs(raw_proj_filtered_comp, filters, return_generator=False)
        else:
            stcs = apply_lcmv_raw(raw_proj_filtered_comp, filters, verbose=True)
            stcs = [stcs]
        # Power Envelope Correlation
        print(f'Computing Power Envelope Correlation for {subject}....Orthogonalize {ortho_flag}')

        all_corr = envelope_correlation(stcs, combine=None, orthogonalize=False,
                    log=False, absolute=True, verbose=None)

        np.save(corr_file_scLeft, all_corr[seed_left_sc])
        np.save(corr_file_acLeft, all_corr[seed_left_ac])
        np.save(corr_file_vcLeft, all_corr[seed_left_vc])
        np.save(corr_file_mtLeft, all_corr[seed_left_mt])
        np.save(corr_file_mtlLeft, all_corr[seed_left_mtl])
        np.save(corr_file_smcLeft, all_corr[seed_left_smc])
        np.save(corr_file_lpcLeft, all_corr[seed_left_lpc])
        np.save(corr_file_dpfcLeft, all_corr[seed_left_dpfc])
        np.save(corr_file_tmpcLeft, all_corr[seed_left_tmpc])

        np.save(corr_file_scRight, all_corr[seed_right_sc])
        np.save(corr_file_acRight, all_corr[seed_right_ac])
        np.save(corr_file_vcRight, all_corr[seed_right_vc])
        np.save(corr_file_mtRight, all_corr[seed_right_mt])
        np.save(corr_file_mtlRight, all_corr[seed_right_mtl])
        np.save(corr_file_smcRight, all_corr[seed_right_smc])
        np.save(corr_file_lpcRight, all_corr[seed_right_lpc])
        np.save(corr_file_dpfcRight, all_corr[seed_right_dpfc])
        np.save(corr_file_tmpcRight, all_corr[seed_right_tmpc])

        np.save(corr_file_mpfc, all_corr[seed_mpfc_index])
        np.save(corr_file_sma, all_corr[seed_sma_index])

        del stcs
예제 #7
0
ch_names.append('UPPT001')
raw.pick_types(meg=True, eeg=False)
if source_method == 'beamformer':
    for label in labels:
        print label.name
        filters = make_lcmv(raw.info,
                            fwd,
                            data_cov,
                            reg=0.05,
                            noise_cov=noise_cov,
                            label=label,
                            pick_ori=None,
                            weight_norm='unit-noise-gain')
        # Apply lcmv on evoked and raw data
        evoked_stc = apply_lcmv(evoked, filters)
        raw_stc = apply_lcmv_raw(raw, filters)
        ch_names.append(label.name)
        evoked_stcs.append(evoked_stc.data.mean(0))
        raw_stcs.append(raw_stc.data.mean(0))
    evoked_stcs = np.array(evoked_stcs)
    raw_stcs = np.array(raw_stcs)
else:
    # Setup inverse model ----------------------------------------------------
    inv = make_inverse_operator(epochs.info,
                                fwd,
                                noise_cov,
                                loose=0.2,
                                depth=0.8)
    snr_evoked = 3.0
    snr_raw = 1.0
    for label in labels:
예제 #8
0
# beamformer requirements
bem = op.join(subjects_dir, subject, 'bem', 'genz501_17a-5120-bem-sol.fif')
sphere = mne.make_sphere_model(r0='auto', head_radius='auto',
                               info=raw_filt.info)
src = mne.setup_volume_source_space(subject='fsaverage', bem=bem,
                                    mri=op.join(subjects_dir, 'fsaverage',
                                                'mri', 'T1.mgz')
                                    subjects_dir=subjects_dir)
fwd = mne.make_forward_solution(raw_filt.info, trans=None, src=src,
                                bem=bem, n_jobs=n_jobs)
filters = make_lcmv(raw_filt.info, fwd, data_cov, reg=0.05,
                    pick_ori='max-power', weight_norm='nai',
                    reduce_rank=True)
t0 = time.time()
stc = apply_lcmv_raw(raw_filt, filters)
print(' Time: %s mns' % round((time.time() - t0) / 60, 2))

# Save result in stc files
stc.save(op.join(datapath, subject, 'lcmv-vol'))
stc.crop(0.0, 1.0)
# plot dSPM time course in src space
kwargs = dict(color='c', linestyle='--', linewidth=.5)
f, ax = plt.subplots(1, 1, figsize=(8, 11))
mx = np.argmax(stc.data, axis=0)
ax.plot(stc.times, stc.data[mx[:100], :].T)
ax.autoscale(enable=True, axis='x', tight=True)
ax.grid(True, which='major', axis='y', **kwargs)
ax.set_xlabel('time (s)')
ax.set_ylabel('strength')
def run_correlation(subjects_dir, subject, volume_spacing, freq):

    num_threads(8)
    frequency = str(freq)
    DATA_DIR = Path(f'{subjects_dir}', f'{subject}', 'mne_files')
    eye_proj1 = f'{DATA_DIR}/{subject}_eyes1-proj.fif.gz'
    eye_proj2 = f'{DATA_DIR}/{subject}_eyes2-proj.fif.gz'
    fname_meg = f'{DATA_DIR}/{subject}_ses-rest_task-rest.fif'
    t1_fname = os.path.join(subjects_dir, subject, 'mri', 'T1.mgz')
    heartbeat_proj = f'{DATA_DIR}/{subject}_heartbeat-proj.fif.gz'
    fwd_fname = f'{DATA_DIR}/{subject}_{volume_spacing}-fwd-label.fif.gz'
    src_fname = f'{DATA_DIR}/{subject}_{volume_spacing}-src-label.fif.gz'
    cov_fname = f'{DATA_DIR}/{subject}-cov_{volume_spacing}-label.fif.gz'
    raw_cov_fname = f'{DATA_DIR}/{subject}-rawcov_{volume_spacing}-label.fif.gz'
    raw_proj = f'{DATA_DIR}/{subject}_ses-rest_task-rest_proj-label.fif.gz'
    source_voxel_coords = f'{DATA_DIR}/{subject}_coords_{volume_spacing}.pkl'
    freesurfer_label = f'{DATA_DIR}/{subject}_freesurferlabel_{volume_spacing}-label.pkl'
    corr_true_file_label = f'{DATA_DIR}/{subject}_corr_ortho_true_{volume_spacing}_{frequency}_label.npy'

    check_for_files = []
    check_for_files.append(corr_true_file_label)


    file_exist = [f for f in check_for_files if os.path.isfile(f)]
    file_not_exist = list(set(file_exist) ^ set(check_for_files))

    if not file_not_exist:
        print('correlation files exists...')

    else:
        trans = f'/home/senthilp/caesar/camcan/cc700/camcan_coreg-master/trans/{subject}-trans.fif' # The transformation file obtained by coregistration
        file_trans = pathlib.Path(trans)
        file_ss = pathlib.Path(src_fname)
        file_fm = pathlib.Path(fwd_fname)
        file_proj = pathlib.Path(raw_proj)
        file_cov = pathlib.Path(cov_fname)
        file_rawcov = pathlib.Path(raw_cov_fname)
        t1 = nib.load(t1_fname)

        if not file_trans.exists():
            print (f'{trans} File doesnt exist...')
            sys.exit(0)

        info = mne.io.read_info(fname_meg)
        # plot_registration(info, trans, subject, subjects_dir)

        print(file_ss)
        if not file_ss.exists():

            src = compute_SourceSpace(subject, subjects_dir, src_fname, source_voxel_coords, plot=True, ss='volume', 
                                volume_spacing=volume_spacing)

            src.save(src_fname, overwrite=True)
        src = mne.read_source_spaces(src_fname)
        #view_SS_brain(subject, subjects_dir, src)

        if not file_fm.exists():
            forward_model(subject, subjects_dir, fname_meg, trans, src, fwd_fname)
        fwd = mne.read_forward_solution(fwd_fname)


       
        # sensitivty_plot(subject, subjects_dir, fwd)
        raw = mne.io.read_raw_fif(fname_meg, verbose='error', preload=True)

        srate = raw.info['sfreq']
        n_time_samps = raw.n_times
        time_secs = raw.times
        ch_names = raw.ch_names
        n_chan = len(ch_names)
        freq_res =  srate/n_time_samps
        print('\n')
        print('-------------------------- Data summary-------------------------------')
        print(f'Subject {subject}')
        print(f"Frequency resolution {freq_res} Hz")
        print(f"The first few channel names are {ch_names[:3]}")
        print(f"The last time sample at {time_secs[-1]} seconds.")
        print(f"Sampling Frequency (No of time points/sec) {srate} Hz")
        print(f"Miscellaneous acquisition info {raw.info['description']}")
        print(f"Bad channels marked during data acquisition {raw.info['bads']}")
        print(f"Convert time in sec ( 60s ) to ingeter index {raw.time_as_index(60)}") # Convert time to indices
        print(f"The raw data object has {n_time_samps} time samples and {n_chan} channels.")
        print('------------------------------------------------------------------------')
        print('\n')
        # raw.plot(n_channels=10, scalings='auto', title='Data from arrays', show=True, block=True)
        if not file_proj.exists():
            projs_ecg, _ = compute_proj_ecg(raw, n_grad=1, n_mag=2, ch_name='ECG063')
            projs_eog1, _ = compute_proj_eog(raw, n_grad=1, n_mag=2, ch_name='EOG061')
            projs_eog2, _ = compute_proj_eog(raw, n_grad=1, n_mag=2, ch_name='EOG062')
            if projs_ecg is not None:
                mne.write_proj(heartbeat_proj, projs_ecg) # Saving projectors
                raw.info['projs'] += projs_ecg
            if projs_eog1 is not None:
                mne.write_proj(eye_proj1, projs_eog1)
                raw.info['projs'] += projs_eog1
            if projs_eog2 is not None:
                mne.write_proj(eye_proj2, projs_eog2)
                raw.info['projs'] += projs_eog2
            raw.apply_proj()
            raw.save(raw_proj, proj=True, overwrite=True)
        print(raw_proj)
        raw_proj_applied = mne.io.read_raw_fif(raw_proj, verbose='error', preload=True)


        print(f'High-pass filtering data at 0.5 Hz')
        raw_proj_applied.filter(l_freq=0.5, h_freq=None, method='iir')

        if not file_cov.exists():
            cov = mne.compute_raw_covariance(raw_proj_applied) # compute before band-pass of interest
            mne.write_cov(cov_fname, cov)
        cov = mne.read_cov(cov_fname) 

        # cov.plot(raw.info, proj=True, exclude='bads', show_svd=False
        # raw_proj_applied.crop(tmax=10)
        
        do_epochs = False

        l_freq = freq-2.0
        h_freq = freq+2.0
        print(f'Band pass filter data [{l_freq}, {h_freq}]')
        raw_proj_filtered = raw_proj_applied.filter(l_freq=l_freq, h_freq=h_freq)

        if do_epochs:
            print('Segmenting raw data...')
            events = mne.make_fixed_length_events(raw_proj_filtered, duration=5.)
            raw_proj_filtered = mne.Epochs(raw_proj_filtered, events=events, tmin=0, tmax=5.,
                                            baseline=None, preload=True)
            data_cov = mne.compute_covariance(raw_proj_filtered)         
        else:
            if not file_rawcov.exists():
                data_cov = mne.compute_raw_covariance(raw_proj_filtered)
                mne.write_cov(raw_cov_fname, data_cov)
            else:
                data_cov = mne.read_cov(file_rawcov)

        filters = make_lcmv(raw_proj_filtered.info, fwd, data_cov, 0.05, cov,
                            pick_ori='max-power', weight_norm='nai')
        raw_proj_filtered_comp = raw_proj_filtered.apply_hilbert()

        if do_epochs:
            stcs = apply_lcmv_epochs(raw_proj_filtered_comp, filters, return_generator=False)
        else:
            stcs = apply_lcmv_raw(raw_proj_filtered_comp, filters, verbose=True)
        
        print('Extracting label time course...')
        atlas = f'{subjects_dir}/{subject}/mri/aparc.a2009s+aseg.mgz'
        label_ts = mne.extract_label_time_course(stcs, atlas, fwd['src'], return_generator=False)
        label_ts = [label_ts]

        # Power Envelope Correlation
        print(f'Computing Power Envelope Correlation for {subject}....Orthogonalize True')

        all_corr = envelope_correlation(label_ts, combine=None, orthogonalize="pairwise",
                    log=True, absolute=True, verbose=None)

        print(f'Correlation saved to {corr_true_file_label}')
        np.save(corr_true_file_label, all_corr)

        del stcs
예제 #10
0
def test_make_lcmv(tmpdir, reg, proj):
    """Test LCMV with evoked data and single trials."""
    raw, epochs, evoked, data_cov, noise_cov, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol = _get_data(proj=proj)

    for fwd in [forward, forward_vol]:
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov)
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc.crop(0.02, None)

        stc_pow = np.sum(np.abs(stc.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = stc.data[idx]
        tmax = stc.times[np.argmax(max_stc)]

        assert 0.09 < tmax < 0.12, tmax
        assert 0.9 < np.max(max_stc) < 3., np.max(max_stc)

        if fwd is forward:
            # Test picking normal orientation (surface source space only).
            filters = make_lcmv(evoked.info, forward_surf_ori, data_cov,
                                reg=reg, noise_cov=noise_cov,
                                pick_ori='normal', weight_norm=None)
            stc_normal = apply_lcmv(evoked, filters, max_ori_out='signed')
            stc_normal.crop(0.02, None)

            stc_pow = np.sum(np.abs(stc_normal.data), axis=1)
            idx = np.argmax(stc_pow)
            max_stc = stc_normal.data[idx]
            tmax = stc_normal.times[np.argmax(max_stc)]

            lower = 0.04 if proj else 0.025
            assert lower < tmax < 0.13, tmax
            lower = 3e-7 if proj else 2e-7
            assert lower < np.max(max_stc) < 5e-7, np.max(max_stc)

            # No weight normalization was applied, so the amplitude of normal
            # orientation results should always be smaller than free
            # orientation results.
            assert (np.abs(stc_normal.data) <= stc.data).all()

        # Test picking source orientation maximizing output source power
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov, pick_ori='max-power')
        stc_max_power = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_max_power.crop(0.02, None)
        stc_pow = np.sum(np.abs(stc_max_power.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = np.abs(stc_max_power.data[idx])
        tmax = stc.times[np.argmax(max_stc)]

        lower = 0.08 if proj else 0.04
        assert lower < tmax < 0.12, tmax
        assert 0.8 < np.max(max_stc) < 3., np.max(max_stc)

        stc_max_power.data[:, :] = np.abs(stc_max_power.data)

        if fwd is forward:
            # Maximum output source power orientation results should be
            # similar to free orientation results in areas with channel
            # coverage
            label = mne.read_label(fname_label)
            mean_stc = stc.extract_label_time_course(label, fwd['src'],
                                                     mode='mean')
            mean_stc_max_pow = \
                stc_max_power.extract_label_time_course(label, fwd['src'],
                                                        mode='mean')
            assert_array_less(np.abs(mean_stc - mean_stc_max_pow), 0.6)

        # Test NAI weight normalization:
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov, pick_ori='max-power',
                            weight_norm='nai')
        stc_nai = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_nai.crop(0.02, None)

        # Test whether unit-noise-gain solution is a scaled version of NAI
        pearsoncorr = np.corrcoef(np.concatenate(np.abs(stc_nai.data)),
                                  np.concatenate(stc_max_power.data))
        assert_almost_equal(pearsoncorr[0, 1], 1.)

    # Test sphere head model with unit-noise gain beamformer and orientation
    # selection and rank reduction of the leadfield
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0, exclude=2.0)

    fwd_sphere = mne.make_forward_solution(evoked.info, trans=None, src=src,
                                           bem=sphere, eeg=False, meg=True)

    # Test that we get an error if not reducing rank
    with pytest.raises(ValueError):  # Singular matrix or complex spectrum
        make_lcmv(
            evoked.info, fwd_sphere, data_cov, reg=0.1,
            noise_cov=noise_cov, weight_norm='unit-noise-gain',
            pick_ori='max-power', reduce_rank=False, rank='full')

    # Now let's reduce it
    filters = make_lcmv(evoked.info, fwd_sphere, data_cov, reg=0.1,
                        noise_cov=noise_cov, weight_norm='unit-noise-gain',
                        pick_ori='max-power', reduce_rank=True)
    stc_sphere = apply_lcmv(evoked, filters, max_ori_out='signed')
    stc_sphere = np.abs(stc_sphere)
    stc_sphere.crop(0.02, None)

    stc_pow = np.sum(stc_sphere.data, axis=1)
    idx = np.argmax(stc_pow)
    max_stc = stc_sphere.data[idx]
    tmax = stc_sphere.times[np.argmax(max_stc)]

    lower = 0.08 if proj else 0.04
    assert lower < tmax < 0.15, tmax
    assert 0.4 < np.max(max_stc) < 2., np.max(max_stc)

    # Test if spatial filter contains src_type
    assert 'src_type' in filters

    # __repr__
    assert len(evoked.ch_names) == 22
    assert len(evoked.info['projs']) == (4 if proj else 0)
    assert len(evoked.info['bads']) == 2
    rank = 17 if proj else 20
    assert 'LCMV' in repr(filters)
    assert 'unknown subject' not in repr(filters)
    assert '484' in repr(filters)
    assert '20' in repr(filters)
    assert 'rank %s' % rank in repr(filters)

    # I/O
    fname = op.join(str(tmpdir), 'filters.h5')
    with pytest.warns(RuntimeWarning, match='-lcmv.h5'):
        filters.save(fname)
    filters_read = read_beamformer(fname)
    assert isinstance(filters, Beamformer)
    assert isinstance(filters_read, Beamformer)
    # deal with object_diff strictness
    filters_read['rank'] = int(filters_read['rank'])
    filters['rank'] = int(filters['rank'])
    assert object_diff(filters, filters_read) == ''

    # Test if fixed forward operator is detected when picking normal or
    # max-power orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_fixed, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_fixed, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='max-power')

    # Test if non-surface oriented forward operator is detected when picking
    # normal orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')

    # Test if volume forward operator is detected when picking normal
    # orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_vol, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')

    # Test if missing of noise covariance matrix is detected when more than
    # one channel type is present in the data
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_vol,
                  data_cov=data_cov, reg=0.01, noise_cov=None,
                  pick_ori='max-power')

    # Test if wrong channel selection is detected in application of filter
    evoked_ch = deepcopy(evoked)
    evoked_ch.pick_channels(evoked_ch.ch_names[1:])
    filters = make_lcmv(evoked.info, forward_vol, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    pytest.raises(ValueError, apply_lcmv, evoked_ch, filters,
                  max_ori_out='signed')

    # Test if discrepancies in channel selection of data and fwd model are
    # handled correctly in apply_lcmv
    # make filter with data where first channel was removed
    filters = make_lcmv(evoked_ch.info, forward_vol, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    # applying that filter to the full data set should automatically exclude
    # this channel from the data
    # also test here that no warnings are thrown - implemented to check whether
    # src should not be None warning occurs
    with pytest.warns(None) as w:
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert len(w) == 0
    # the result should be equal to applying this filter to a dataset without
    # this channel:
    stc_ch = apply_lcmv(evoked_ch, filters, max_ori_out='signed')
    assert_array_almost_equal(stc.data, stc_ch.data)

    # Test if non-matching SSP projection is detected in application of filter
    if proj:
        raw_proj = deepcopy(raw)
        raw_proj.del_proj()
        with pytest.raises(ValueError, match='do not match the projections'):
            apply_lcmv_raw(raw_proj, filters, max_ori_out='signed')

    # Test if setting reduce_rank to True returns a NotImplementedError
    # when no orientation selection is done or pick_ori='normal'
    pytest.raises(NotImplementedError, make_lcmv, evoked.info, forward_vol,
                  data_cov, noise_cov=noise_cov, pick_ori=None,
                  weight_norm='nai', reduce_rank=True)
    pytest.raises(NotImplementedError, make_lcmv, evoked.info,
                  forward_surf_ori, data_cov, noise_cov=noise_cov,
                  pick_ori='normal', weight_norm='nai', reduce_rank=True)

    # Test if spatial filter contains src_type
    assert 'src_type' in filters

    # check whether a filters object without src_type throws expected warning
    del filters['src_type']  # emulate 0.16 behaviour to cause warning
    with pytest.warns(RuntimeWarning, match='spatial filter does not contain '
                      'src_type'):
        apply_lcmv(evoked, filters, max_ori_out='signed')

    # Now test single trial using fixed orientation forward solution
    # so we can compare it to the evoked solution
    filters = make_lcmv(epochs.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    stcs = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')
    stcs_ = apply_lcmv_epochs(epochs, filters, return_generator=True,
                              max_ori_out='signed')
    assert_array_equal(stcs[0].data, next(stcs_).data)

    epochs.drop_bad()
    assert (len(epochs.events) == len(stcs))

    # average the single trial estimates
    stc_avg = np.zeros_like(stcs[0].data)
    for this_stc in stcs:
        stc_avg += this_stc.data
    stc_avg /= len(stcs)

    # compare it to the solution using evoked with fixed orientation
    filters = make_lcmv(evoked.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    stc_fixed = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert_array_almost_equal(stc_avg, stc_fixed.data)

    # use a label so we have few source vertices and delayed computation is
    # not used
    filters = make_lcmv(epochs.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov, label=label)
    stcs_label = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')

    assert_array_almost_equal(stcs_label[0].data, stcs[0].in_label(label).data)

    # Test condition where the filters weights are zero. There should not be
    # any divide-by-zero errors
    zero_cov = data_cov.copy()
    zero_cov['data'][:] = 0
    filters = make_lcmv(epochs.info, forward_fixed, zero_cov, reg=0.01,
                        noise_cov=noise_cov)
    assert_array_equal(filters['weights'], 0)