def test_temporal_filter(): """Test methods of TemporalFilter.""" X = np.random.rand(5, 5, 1200) # Test init test values = (('10hz', None, 100., 'auto'), (5., '10hz', 100., 'auto'), (10., 20., 5., 'auto'), (None, None, 100., '5hz')) for low, high, sf, ltrans in values: filt = TemporalFilter(low, high, sf, ltrans, fir_design='firwin') assert_raises(ValueError, filt.fit_transform, X) # Add tests for different combinations of l_freq and h_freq for low, high in ((5., 15.), (None, 15.), (5., None)): filt = TemporalFilter(low, high, sfreq=100., fir_design='firwin') Xt = filt.fit_transform(X) assert_array_equal(filt.fit_transform(X), Xt) assert_true(X.shape == Xt.shape) # Test fit and transform numpy type check with warnings.catch_warnings(record=True): assert_raises(TypeError, filt.transform, [1, 2]) # Test with 2 dimensional data array X = np.random.rand(101, 500) filt = TemporalFilter(l_freq=25., h_freq=50., sfreq=1000., filter_length=150, fir_design='firwin2') assert_equal(filt.fit_transform(X).shape, X.shape)
def test_temporal_filter(): """Test methods of TemporalFilter.""" X = np.random.rand(5, 5, 1200) # Test init test values = (('10hz', None, 100., 'auto'), (5., '10hz', 100., 'auto'), (10., 20., 5., 'auto'), (None, None, 100., '5hz')) for low, high, sf, ltrans in values: filt = TemporalFilter(low, high, sf, ltrans) assert_raises(ValueError, filt.fit_transform, X) # Add tests for different combinations of l_freq and h_freq for low, high in ((5., 15.), (None, 15.), (5., None)): filt = TemporalFilter(low, high, sfreq=100.) Xt = filt.fit_transform(X) assert_array_equal(filt.fit_transform(X), Xt) assert_true(X.shape == Xt.shape) # Test fit and transform numpy type check with warnings.catch_warnings(record=True): assert_raises(TypeError, filt.transform, [1, 2]) # Test with 2 dimensional data array X = np.random.rand(101, 500) filt = TemporalFilter(l_freq=25., h_freq=50., sfreq=1000., filter_length=150) assert_equal(filt.fit_transform(X).shape, X.shape)
def test_temporal_filter(): """Test methods of TemporalFilter.""" X = np.random.rand(5, 5, 1200) # Test init test values = (('10hz', None, 100., 'auto'), (5., '10hz', 100., 'auto'), (10., 20., 5., 'auto'), (None, None, 100., '5hz')) for low, high, sf, ltrans in values: filt = TemporalFilter(low, high, sf, ltrans, fir_design='firwin') pytest.raises(ValueError, filt.fit_transform, X) # Add tests for different combinations of l_freq and h_freq for low, high in ((5., 15.), (None, 15.), (5., None)): filt = TemporalFilter(low, high, sfreq=100., fir_design='firwin') Xt = filt.fit_transform(X) assert_array_equal(filt.fit_transform(X), Xt) assert (X.shape == Xt.shape) # Test fit and transform numpy type check with pytest.warns(RuntimeWarning, match='longer than the signal'): pytest.raises(TypeError, filt.transform, [1, 2]) # Test with 2 dimensional data array X = np.random.rand(101, 500) filt = TemporalFilter(l_freq=25., h_freq=50., sfreq=1000., filter_length=150, fir_design='firwin2') assert_equal(filt.fit_transform(X).shape, X.shape)