def ica_convert2mne(unmixing, pca, info=None, method='fastica'): # create MNE-type of ICA object from mne.preprocessing.ica import ICA n_comp = unmixing.shape[1] if method == 'extended-infomax': ica_method = 'infomax' fit_params = dict(extended=True) else: ica_method = method fit_params = None ica = ICA(n_components=n_comp, method=ica_method, fit_params=fit_params) # add PCA object ica.pca = pca # PCA info to be used bei MNE-Python ica.pca_mean_ = pca.mean_ ica.pca_components_ = pca.components_ exp_var = pca.explained_variance_ ica.pca_explained_variance_ = exp_var ica.pca_explained_variance_ratio_ = pca.explained_variance_ratio_ # ICA info ica.n_components_ = n_comp ica.n_components = n_comp ica.components_ = unmixing # compatible with sklearn ica.unmixing_ = ica.components_ # as used by sklearn ica.mixing_ = pinv(ica.unmixing_) # as used by sklearn ica.unmixing_matrix_ = ica.unmixing_ / np.sqrt( exp_var[0:n_comp])[None, :] # as used by MNE-Python ica.mixing_matrix_ = pinv(ica.unmixing_matrix_) # as used by MNE-Python ica._ica_names = ['ICA%03d' % ii for ii in range(n_comp)] ica.fun = method if info: ica.info = info return ica
def eeglab2mne(fname, montage='standard_1020', event_id=None, load_ica=False): """Get an EEGLAB dataset into a MNE Raw object. Parameters ---------- input_fname : str Path to the .set file. If the data is stored in a separate .fdt file, it is expected to be in the same folder as the .set file. montage : str | None | instance of montage Path or instance of montage containing electrode positions. If None, sensor locations are (0,0,0). See the documentation of :func:`mne.channels.read_montage` for more information. event_id : dict Map event id (integer) to string name of corresponding event. This allows to smoothly load EEGLAB event structure when overlapping events (e.g. boundaries) occur. load_ica : bool Default to False. Load ica matrices from eeglab structure if available and attempt to transfer them into the ica structure of MNE. Returns ------- raw : Instance of RawEEGLAB A Raw object containing EEGLAB .set data. ica : Instance of ICA If load_ica True Note ---- ICA matrices in ICA MNE object might not entirely capture the decomposition. To apply projections (i.e. remove some components from observed EEG data) it might be better to load directly the matrices and do it by hand, where: - icawinv = pinv(icaweights * icasphere) - ica_act = icaweights * icasphere * eegdata References ---------- .. [#] https://benediktehinger.de/blog/science/ica-weights-and-invweights/ .. [#] https://github.com/mne-tools/mne-python/pull/5114/files """ montage_mne = mne.channels.make_standard_montage(montage) try: raw = mne.io.read_raw_eeglab(input_fname=fname, preload=True) except NotImplementedError: print("Version 7.3 matlab file detected, will load 'by hand'") eeg, srateate, _, _, _, ch_names = _load_eeglab_data(fname) info = mne.create_info(ch_names=ch_names, sfreq=srateate, ch_types='eeg') raw = mne.io.RawArray(eeg.T, info) # set up montage: raw.set_montage(montage_mne) if load_ica: weights, winv, sphere = load_ica_matrices(fname) ica = ICA(n_components=winv.shape[1], max_pca_components=winv.shape[1]) ica.fit(raw, decim=2, start=1., stop=60.) ica.unmixing_matrix_ = weights.dot(sphere.dot(ica.pca_components_.T)) ica.mixing_matrix_ = np.linalg.pinv(ica.unmixing_matrix_) return raw, ica return raw