예제 #1
0
파일: _ssp.py 프로젝트: beast1313/mnefun
def _compute_add_eog(p, subj, raw_orig, projs, eog_nums, kind, pca_dir,
                     flat, extra_proj, old_kwargs, p_sl):
    assert kind in ('EOG', 'HEOG', 'VEOG')
    bk = dict(EOG='blink').get(kind, kind.lower())
    eog_eve = op.join(pca_dir, f'preproc_{bk}-eve.fif')
    eog_epo = op.join(pca_dir, f'preproc_{bk}-epo.fif')
    eog_proj = op.join(pca_dir, f'preproc_{bk}-proj.fif')
    eog_t_lims = _handle_dict(getattr(p, f'{kind.lower()}_t_lims'), subj)
    eog_f_lims = _handle_dict(getattr(p, f'{kind.lower()}_f_lims'), subj)
    eog_channel = _handle_dict(getattr(p, f'{kind.lower()}_channel'), subj)
    thresh = _handle_dict(getattr(p, f'{kind.lower()}_thresh'), subj)
    if eog_channel is None and kind != 'EOG':
        eog_channel = 'EOG061' if kind == 'HEOG' else 'EOG062'
    if eog_nums.any():
        if p.disp_files:
            print(f'    Computing {kind} projectors...', end='')
        raw = raw_orig.copy()
        raw.filter(eog_f_lims[0], eog_f_lims[1], n_jobs=p.n_jobs_fir,
                   method='fir', filter_length=p.filter_length,
                   l_trans_bandwidth=0.5, h_trans_bandwidth=0.5,
                   phase='zero-double', fir_window='hann',
                   skip_by_annotation='edge', **old_kwargs)
        raw.add_proj(projs)
        raw.apply_proj()
        eog_events = find_eog_events(
            raw, ch_name=eog_channel, reject_by_annotation=True,
            thresh=thresh)
        use_reject, use_flat = _restrict_reject_flat(
            _handle_dict(p.ssp_eog_reject, subj), flat, raw)
        eog_epochs = Epochs(
            raw, eog_events, 998, eog_t_lims[0], eog_t_lims[1],
            baseline=None, reject=use_reject, flat=use_flat, preload=True)
        print('  obtained %d epochs from %d events.' % (len(eog_epochs),
                                                        len(eog_events)))
        del eog_events
        if len(eog_epochs) >= 5:
            write_events(eog_eve, eog_epochs.events)
            eog_epochs.save(eog_epo, **_get_epo_kwargs())
            desc_prefix = f'{kind}-%s-%s' % tuple(eog_t_lims)
            pr = compute_proj_wrap(
                eog_epochs, p.proj_ave, n_grad=eog_nums[0],
                n_mag=eog_nums[1], n_eeg=eog_nums[2],
                desc_prefix=desc_prefix, **extra_proj)
            assert len(pr) == np.sum(eog_nums[::p_sl])
            write_proj(eog_proj, pr)
            projs.extend(pr)
        else:
            warnings.warn('Only %d usable EOG events!' % len(eog_epochs))
            _safe_remove([eog_proj, eog_eve, eog_epo])
        del raw, eog_epochs
    else:
        _safe_remove([eog_proj, eog_eve, eog_epo])
예제 #2
0
def get_ics_ocular(meg_raw,
                   ica,
                   flow=2,
                   fhigh=20,
                   name_eog='EOG 002',
                   score_func='pearsonr',
                   thresh=0.2,
                   event_id=998):
    '''
    Find Independent Components related to ocular artefacts
    '''

    from mne.preprocessing import find_eog_events

    # ---------------------------
    # vertical EOG
    # ---------------------------
    ic_eog = []
    if name_eog in meg_raw.ch_names:
        idx_eog = [meg_raw.ch_names.index(name_eog)]
        eog_filtered = mne.filter.filter_data(meg_raw[idx_eog, :][0],
                                              meg_raw.info['sfreq'],
                                              l_freq=flow,
                                              h_freq=fhigh)
        scores_eog = ica.score_sources(meg_raw,
                                       target=eog_filtered,
                                       score_func=score_func)
        ic_eog = np.where(np.abs(scores_eog) >= thresh)[0]  # count from 0
        # get EOG ver peaks
        events_eog = find_eog_events(meg_raw,
                                     ch_name=name_eog,
                                     event_id=event_id,
                                     l_freq=flow,
                                     h_freq=fhigh,
                                     verbose=False)

        # make sure event samples start from 0
        events_eog[:, 0] -= meg_raw.first_samp

    else:
        logger.warning(">>>> Warning: Could not find EOG channel %s" %
                       name_eog)
        events_eog = []

    if len(ic_eog) == 0:
        ic_eog = np.array([-1])
        scores_eog = np.zeros(
            ica.n_components)  #scores_eog = np.array([-1]) ???
        # events_eog = np.array([-1])

    return [ic_eog, scores_eog, events_eog]
예제 #3
0
파일: caller.py 프로젝트: jaeilepp/eggie
 def findEogEvents(self, params):
     """
     Finds events for the given id.
     Parameters:
     params - A dictionary of parameters for finding the events.
     """
     #eog_events = find_eog_events(raw, event_id=params['event_id'], ch_name=params['ch_name'],
     #                            verbose=True, tstart=params['tstart'])
     try:
         print type(params['event_id'])
         eog_events = find_eog_events(self.raw,
                                      event_id=params['event_id'],
                                      l_freq=params['l_freq'],
                                      h_freq=params['h_freq'],
                                      filter_length=params['filter_length'],
                                      ch_name=params['ch_name'],
                                      verbose=True,
                                      tstart=params['tstart'])
     except Exception as e:
         print "Exception while finding events.\n"
         print str(e)
         return []
     return eog_events
예제 #4
0
def plot_performance_artifact_rejection(meg_raw, ica, fnout_fig,
                                        meg_clean=None, show=False,
                                        proj=False, verbose=False,
                                        name_ecg='ECG 001', name_eog='EOG 002'):
    '''
    Creates a performance image of the data before
    and after the cleaning process.
    '''

    import matplotlib.pyplot as pl
    from mne.preprocessing import find_ecg_events, find_eog_events
    from jumeg import jumeg_math as jmath

    # name_ecg = 'ECG 001'
    # name_eog_hor = 'EOG 001'
    # name_eog_ver = 'EOG 002'
    event_id_ecg = 999
    event_id_eog = 998
    tmin_ecg = -0.4
    tmax_ecg = 0.4
    tmin_eog = -0.4
    tmax_eog = 0.4

    picks = mne.pick_types(meg_raw.info, meg=True, ref_meg=False,
                           exclude='bads')
    # as we defined x% of the explained variance as noise (e.g. 5%)
    # we will remove this noise from the data
    if meg_clean:
        meg_clean_given = True
    else:
        meg_clean_given = False
        meg_clean = ica.apply(meg_raw.copy(), exclude=ica.exclude,
                              n_pca_components=ica.n_components_)

    # plotting parameter
    props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
    # check if ECG and EOG was recorded in addition
    # to the MEG data
    ch_names = meg_raw.info['ch_names']

    # ECG
    if name_ecg in ch_names:
        nstart = 0
        nrange = 1
    else:
        nstart = 1
        nrange = 1

    # EOG
    if name_eog in ch_names:
        nrange = 2

    y_figsize = 6 * nrange
    perf_art_rej = np.zeros(2)

    # ToDo:  How can we avoid popping up the window if show=False ?
    pl.ioff()
    pl.figure('performance image', figsize=(12, y_figsize))
    pl.clf()

    # ECG, EOG:  loop over all artifact events
    for i in range(nstart, nrange):
        # get event indices
        if i == 0:
            baseline = (None, None)
            event_id = event_id_ecg
            idx_event, _, _ = find_ecg_events(meg_raw, event_id,
                                              ch_name=name_ecg,
                                              verbose=verbose)
            idx_ref_chan = meg_raw.ch_names.index(name_ecg)
            tmin = tmin_ecg
            tmax = tmax_ecg
            pl1 = nrange * 100 + 21
            pl2 = nrange * 100 + 22
            text1 = "CA: original data"
            text2 = "CA: cleaned data"
        elif i == 1:
            baseline = (None, None)
            event_id = event_id_eog
            idx_event = find_eog_events(meg_raw, event_id, ch_name=name_eog,
                                        verbose=verbose)
            idx_ref_chan = meg_raw.ch_names.index(name_eog)
            tmin = tmin_eog
            tmax = tmax_eog
            pl1 = nrange * 100 + 21 + (nrange - nstart - 1) * 2
            pl2 = nrange * 100 + 22 + (nrange - nstart - 1) * 2
            text1 = "OA: original data"
            text2 = "OA: cleaned data"

        # average the signals
        raw_epochs = mne.Epochs(meg_raw, idx_event, event_id, tmin, tmax,
                                picks=picks, baseline=baseline, proj=proj,
                                verbose=verbose)
        cleaned_epochs = mne.Epochs(meg_clean, idx_event, event_id, tmin, tmax,
                                    picks=picks, baseline=baseline, proj=proj,
                                    verbose=verbose)
        ref_epochs = mne.Epochs(meg_raw, idx_event, event_id, tmin, tmax,
                                picks=[idx_ref_chan], baseline=baseline,
                                proj=proj, verbose=verbose)

        raw_epochs_avg = raw_epochs.average()
        cleaned_epochs_avg = cleaned_epochs.average()
        ref_epochs_avg = np.average(ref_epochs.get_data(), axis=0).flatten() * -1.0
        times = raw_epochs_avg.times * 1e3
        if np.max(raw_epochs_avg.data) < 1:
            factor = 1e15
        else:
            factor = 1
        ymin = np.min(raw_epochs_avg.data) * factor
        ymax = np.max(raw_epochs_avg.data) * factor

        # plotting data before cleaning
        pl.subplot(pl1)
        pl.plot(times, raw_epochs_avg.data.T * factor, 'k')
        pl.title(text1)
        # plotting reference signal
        pl.plot(times, jmath.rescale(ref_epochs_avg, ymin, ymax), 'r')
        pl.xlim(times[0], times[len(times) - 1])
        pl.ylim(1.1 * ymin, 1.1 * ymax)
        # print some info
        textstr1 = 'num_events=%d\nEpochs: tmin, tmax = %0.1f, %0.1f' \
                   % (len(idx_event), tmin, tmax)
        pl.text(times[10], 1.09 * ymax, textstr1, fontsize=10,
                verticalalignment='top', bbox=props)

        # plotting data after cleaning
        pl.subplot(pl2)
        pl.plot(times, cleaned_epochs_avg.data.T * factor, 'k')
        pl.title(text2)
        # plotting reference signal again
        pl.plot(times, jmath.rescale(ref_epochs_avg, ymin, ymax), 'r')
        pl.xlim(times[0], times[len(times) - 1])
        pl.ylim(1.1 * ymin, 1.1 * ymax)
        # print some info
        perf_art_rej[i] = calc_performance(raw_epochs_avg, cleaned_epochs_avg)
        # ToDo: would be nice to add info about ica.excluded
        if meg_clean_given:
            textstr1 = 'Performance: %d\nFrequency Correlation: %d'\
                       % (perf_art_rej[i],
                          calc_frequency_correlation(raw_epochs_avg, cleaned_epochs_avg))
        else:
            textstr1 = 'Performance: %d\nFrequency Correlation: %d\n# ICs: %d\nExplained Var.: %d'\
                       % (perf_art_rej[i],
                          calc_frequency_correlation(raw_epochs_avg, cleaned_epochs_avg),
                          ica.n_components_, ica.n_components * 100)

        pl.text(times[10], 1.09 * ymax, textstr1, fontsize=10,
                verticalalignment='top', bbox=props)

    if show:
        pl.show()

    # save image
    pl.savefig(fnout_fig + '.png', format='png')
    pl.close('performance image')
    pl.ion()

    return perf_art_rej
예제 #5
0
def plot_performance_artifact_rejection(meg_raw, ica, fnout_fig,
                                        meg_clean=None, show=False,
                                        proj=False, verbose=False,
                                        name_ecg='ECG 001', name_eog='EOG 002'):
    '''
    Creates a performance image of the data before
    and after the cleaning process.
    '''

    from mne.preprocessing import find_ecg_events, find_eog_events
    from jumeg import jumeg_math as jmath

    # name_ecg = 'ECG 001'
    # name_eog_hor = 'EOG 001'
    # name_eog_ver = 'EOG 002'
    event_id_ecg = 999
    event_id_eog = 998
    tmin_ecg = -0.4
    tmax_ecg = 0.4
    tmin_eog = -0.4
    tmax_eog = 0.4

    picks = mne.pick_types(meg_raw.info, meg=True, ref_meg=False,
                           exclude='bads')
    # as we defined x% of the explained variance as noise (e.g. 5%)
    # we will remove this noise from the data
    if meg_clean:
        meg_clean_given = True
    else:
        meg_clean_given = False
        meg_clean = ica.apply(meg_raw.copy(), exclude=ica.exclude,
                              n_pca_components=ica.n_components_)

    # plotting parameter
    props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
    # check if ECG and EOG was recorded in addition
    # to the MEG data
    ch_names = meg_raw.info['ch_names']

    # ECG
    if name_ecg in ch_names:
        nstart = 0
        nrange = 1
    else:
        nstart = 1
        nrange = 1

    # EOG
    if name_eog in ch_names:
        nrange = 2

    y_figsize = 6 * nrange
    perf_art_rej = np.zeros(2)

    # ToDo:  How can we avoid popping up the window if show=False ?
    pl.ioff()
    pl.figure('performance image', figsize=(12, y_figsize))
    pl.clf()

    # ECG, EOG:  loop over all artifact events
    for i in range(nstart, nrange):
        # get event indices
        if i == 0:
            baseline = (None, None)
            event_id = event_id_ecg
            idx_event, _, _ = find_ecg_events(meg_raw, event_id,
                                              ch_name=name_ecg,
                                              verbose=verbose)
            idx_ref_chan = meg_raw.ch_names.index(name_ecg)
            tmin = tmin_ecg
            tmax = tmax_ecg
            pl1 = nrange * 100 + 21
            pl2 = nrange * 100 + 22
            text1 = "CA: original data"
            text2 = "CA: cleaned data"
        elif i == 1:
            baseline = (None, None)
            event_id = event_id_eog
            idx_event = find_eog_events(meg_raw, event_id, ch_name=name_eog,
                                        verbose=verbose)
            idx_ref_chan = meg_raw.ch_names.index(name_eog)
            tmin = tmin_eog
            tmax = tmax_eog
            pl1 = nrange * 100 + 21 + (nrange - nstart - 1) * 2
            pl2 = nrange * 100 + 22 + (nrange - nstart - 1) * 2
            text1 = "OA: original data"
            text2 = "OA: cleaned data"

        # average the signals
        raw_epochs = mne.Epochs(meg_raw, idx_event, event_id, tmin, tmax,
                                picks=picks, baseline=baseline, proj=proj,
                                verbose=verbose)
        cleaned_epochs = mne.Epochs(meg_clean, idx_event, event_id, tmin, tmax,
                                    picks=picks, baseline=baseline, proj=proj,
                                    verbose=verbose)
        ref_epochs = mne.Epochs(meg_raw, idx_event, event_id, tmin, tmax,
                                picks=[idx_ref_chan], baseline=baseline,
                                proj=proj, verbose=verbose)

        raw_epochs_avg = raw_epochs.average()
        cleaned_epochs_avg = cleaned_epochs.average()
        ref_epochs_avg = np.average(ref_epochs.get_data(), axis=0).flatten() * -1.0
        times = raw_epochs_avg.times * 1e3
        if np.max(raw_epochs_avg.data) < 1:
            factor = 1e15
        else:
            factor = 1
        ymin = np.min(raw_epochs_avg.data) * factor
        ymax = np.max(raw_epochs_avg.data) * factor

        # plotting data before cleaning
        pl.subplot(pl1)
        pl.plot(times, raw_epochs_avg.data.T * factor, 'k')
        pl.title(text1)
        # plotting reference signal
        pl.plot(times, jmath.rescale(ref_epochs_avg, ymin, ymax), 'r')
        pl.xlim(times[0], times[len(times) - 1])
        pl.ylim(1.1 * ymin, 1.1 * ymax)
        # print some info
        textstr1 = 'num_events=%d\nEpochs: tmin, tmax = %0.1f, %0.1f' \
                   % (len(idx_event), tmin, tmax)
        pl.text(times[10], 1.09 * ymax, textstr1, fontsize=10,
                verticalalignment='top', bbox=props)

        # plotting data after cleaning
        pl.subplot(pl2)
        pl.plot(times, cleaned_epochs_avg.data.T * factor, 'k')
        pl.title(text2)
        # plotting reference signal again
        pl.plot(times, jmath.rescale(ref_epochs_avg, ymin, ymax), 'r')
        pl.xlim(times[0], times[len(times) - 1])
        pl.ylim(1.1 * ymin, 1.1 * ymax)
        # print some info
        perf_art_rej[i] = calc_performance(raw_epochs_avg, cleaned_epochs_avg)
        # ToDo: would be nice to add info about ica.excluded
        if meg_clean_given:
            textstr1 = 'Performance: %d\nFrequency Correlation: %d'\
                       % (perf_art_rej[i],
                          calc_frequency_correlation(raw_epochs_avg, cleaned_epochs_avg))
        else:
            textstr1 = 'Performance: %d\nFrequency Correlation: %d\n# ICs: %d\nExplained Var.: %d'\
                       % (perf_art_rej[i],
                          calc_frequency_correlation(raw_epochs_avg, cleaned_epochs_avg),
                          ica.n_components_, ica.n_components * 100)

        pl.text(times[10], 1.09 * ymax, textstr1, fontsize=10,
                verticalalignment='top', bbox=props)

    if show:
        pl.show()

    # save image
    pl.savefig(fnout_fig + '.png', format='png')
    pl.close('performance image')
    pl.ion()

    return perf_art_rej
raw_new_ref_show = raw_new_ref.copy().crop(tmin=tmin, tmax=tmax)
raw_new_ref_show.plot(duration=6)
raw_reconst_show = raw_reconst.copy().crop(tmin=tmin, tmax=tmax)
raw_reconst_show.plot(duration=6)

raw_reconst.save(datapath + str(subID) + '_reconst_newRef_raw.fif',
                 overwrite=True)
# raw_reconst = mne.io.read_raw_fif(datapath + str(subID) + '_reconst_newRef_raw.fif', preload=True)

# make sure two different artifact method have the same variable name
raw_artifact = raw_reconst

# -------------------------Reject bad data spans------------------------- #
# Annotate bad spans of data
# Annotate EOG programmatically, annotate from [-0.25, 0.25]
eog_events = find_eog_events(raw_new_ref)
onsets = eog_events[:, 0] / raw_new_ref.info['sfreq'] - 0.25
durations = [0.5] * len(eog_events)
descriptions = ['bad blink'] * len(eog_events)
blink_annot = mne.Annotations(onsets,
                              durations,
                              descriptions,
                              orig_time=raw_new_ref.info['meas_date'])

# visualize the bad blinks
# raw_new_ref_badBlink = raw_new_ref.copy().set_annotations(blink_annot)
# raw_new_ref_show = raw_new_ref_badBlink.copy().crop(tmin=tmin, tmax=tmax)
# raw_new_ref_show.plot(duration=6)

# get raw data annotations
raw_new_ref_annot = raw_new_ref.annotations