def test_polar_to_cartesian(): """Test helper transform function from polar to cartesian""" r = 1 theta = np.pi # expected values are (-1, 0) x = r * np.cos(theta) y = r * np.sin(theta) coord = _pol_to_cart(np.array([[r, theta]]))[0] # np.pi is an approx since pi is irrational assert_allclose(coord, (x, y), atol=1e-7) assert_allclose(coord, (-1, 0), atol=1e-7) assert_allclose(coord, _polar_to_cartesian(theta, r), atol=1e-7) rng = np.random.RandomState(0) r = rng.randn(10) theta = rng.rand(10) * (2 * np.pi) polar = np.array((r, theta)).T assert_allclose([_polar_to_cartesian(p[1], p[0]) for p in polar], _pol_to_cart(polar), atol=1e-7)
def test_polar_to_cartesian(): """Test helper transform function from polar to cartesian.""" r = 1 theta = np.pi # expected values are (-1, 0) x = r * np.cos(theta) y = r * np.sin(theta) coord = _pol_to_cart(np.array([[r, theta]]))[0] # np.pi is an approx since pi is irrational assert_allclose(coord, (x, y), atol=1e-7) assert_allclose(coord, (-1, 0), atol=1e-7) assert_allclose(coord, _polar_to_cartesian(theta, r), atol=1e-7) rng = np.random.RandomState(0) r = rng.randn(10) theta = rng.rand(10) * (2 * np.pi) polar = np.array((r, theta)).T assert_allclose([_polar_to_cartesian(p[1], p[0]) for p in polar], _pol_to_cart(polar), atol=1e-7)