예제 #1
0
    def testMultiTrain(self):
        data_dir = MNIST_DATA_DIR + MNIST_MULTI_TRAIN_FILE
        with self.test_session(graph=tf.Graph()) as sess:
            features = mnist_input_record.inputs(data_dir=data_dir,
                                                 batch_size=1,
                                                 split='train',
                                                 num_targets=2,
                                                 batch_capacity=2)
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)
            images, labels, recons_image, spare_image = sess.run([
                features['images'], features['labels'],
                features['recons_image'], features['spare_image']
            ])
            self.assertEqual((1, 10), labels.shape)
            self.assertEqual(2, np.sum(labels))
            self.assertItemsEqual([0, 1], np.unique(labels))
            self.assertEqual(36, features['height'])
            self.assertEqual((1, 36 * 36), images.shape)
            self.assertEqual(recons_image.shape, images.shape)
            self.assertEqual(spare_image.shape, images.shape)

            coord.request_stop()
            for thread in threads:
                thread.join()
예제 #2
0
    def testSingleTrainDistorted(self):
        with self.test_session(graph=tf.Graph()) as sess:
            features = mnist_input_record.inputs(data_dir=MNIST_DATA_DIR,
                                                 batch_size=1,
                                                 split='train',
                                                 num_targets=1,
                                                 distort=True,
                                                 batch_capacity=2)
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)
            images, labels, recons_image = sess.run([
                features['images'], features['labels'],
                features['recons_image']
            ])
            self.assertEqual((1, 10), labels.shape)
            self.assertEqual(1, np.sum(labels))
            self.assertItemsEqual([0, 1], np.unique(labels))
            self.assertEqual(24, features['height'])
            self.assertEqual((1, 24, 24, 1), images.shape)
            self.assertEqual(recons_image.shape, images.shape)
            self.assertAllEqual(recons_image, images)

            coord.request_stop()
            for thread in threads:
                thread.join()
예제 #3
0
  def testMultiTrain(self):
    data_dir = MNIST_DATA_DIR + MNIST_MULTI_TRAIN_FILE
    with self.test_session(graph=tf.Graph()) as sess:
      features = mnist_input_record.inputs(
          data_dir=data_dir,
          batch_size=1,
          split='train',
          num_targets=2,
          batch_capacity=2)
      coord = tf.train.Coordinator()
      threads = tf.train.start_queue_runners(coord=coord)
      images, labels, recons_image, spare_image = sess.run([
          features['images'], features['labels'], features['recons_image'],
          features['spare_image']
      ])
      self.assertEqual((1, 10), labels.shape)
      self.assertEqual(2, np.sum(labels))
      self.assertItemsEqual([0, 1], np.unique(labels))
      self.assertEqual(36, features['height'])
      self.assertEqual((1, 36 * 36), images.shape)
      self.assertEqual(recons_image.shape, images.shape)
      self.assertEqual(spare_image.shape, images.shape)

      coord.request_stop()
      for thread in threads:
        thread.join()
예제 #4
0
    def testMultiTest(self):
        data_dir = MNIST_DATA_DIR + MNIST_MULTI_TEST_FILE
        with self.test_session(graph=tf.Graph()) as sess:
            test_features = mnist_input_record.inputs(data_dir=data_dir,
                                                      batch_size=1,
                                                      split='test',
                                                      num_targets=2,
                                                      batch_capacity=2)
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)
            test_label = sess.run([test_features['recons_label']])
            self.assertEqual([7], test_label)

            coord.request_stop()
            for thread in threads:
                thread.join()
예제 #5
0
  def testMultiTest(self):
    data_dir = MNIST_DATA_DIR + MNIST_MULTI_TEST_FILE
    with self.test_session(graph=tf.Graph()) as sess:
      test_features = mnist_input_record.inputs(
          data_dir=data_dir,
          batch_size=1,
          split='test',
          num_targets=2,
          batch_capacity=2)
      coord = tf.train.Coordinator()
      threads = tf.train.start_queue_runners(coord=coord)
      test_label = sess.run([test_features['recons_label']])
      self.assertEqual([7], test_label)

      coord.request_stop()
      for thread in threads:
        thread.join()
예제 #6
0
  def testSingleTestDistorted(self):
    with self.test_session(graph=tf.Graph()) as sess:
      features = mnist_input_record.inputs(
          data_dir=MNIST_DATA_DIR,
          batch_size=1,
          split='test',
          num_targets=1,
          distort=True,
          batch_capacity=2)
      coord = tf.train.Coordinator()
      threads = tf.train.start_queue_runners(coord=coord)
      images, recons_image, recons_label = sess.run([
          features['images'], features['recons_image'], features['recons_label']
      ])
      self.assertEqual([7], recons_label)
      self.assertEqual(24, features['height'])
      self.assertEqual((1, 24, 24, 1), images.shape)
      self.assertAllEqual(recons_image, images)

      coord.request_stop()
      for thread in threads:
        thread.join()
예제 #7
0
    def testSingleTestDistorted(self):
        with self.test_session(graph=tf.Graph()) as sess:
            features = mnist_input_record.inputs(data_dir=MNIST_DATA_DIR,
                                                 batch_size=1,
                                                 split='test',
                                                 num_targets=1,
                                                 distort=True,
                                                 evaluate=True,
                                                 batch_capacity=2)
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord)
            images, recons_image, recons_label = sess.run([
                features['images'], features['recons_image'],
                features['recons_label']
            ])
            self.assertEqual([7], recons_label)
            self.assertEqual(24, features['height'])
            self.assertEqual((1, 24, 24, 1), images.shape)
            self.assertAllEqual(recons_image, images)

            coord.request_stop()
            for thread in threads:
                thread.join()
예제 #8
0
  def testSingleTrain(self):
    with self.test_session(graph=tf.Graph()) as sess:
      features = mnist_input_record.inputs(
          data_dir=MNIST_DATA_DIR,
          batch_size=1,
          split='train',
          num_targets=1,
          batch_capacity=2)
      coord = tf.train.Coordinator()
      threads = tf.train.start_queue_runners(coord=coord)
      images, labels, recons_image = sess.run(
          [features['images'], features['labels'], features['recons_image']])
      self.assertEqual((1, 10), labels.shape)
      self.assertEqual(1, np.sum(labels))
      self.assertItemsEqual([0, 1], np.unique(labels))
      self.assertEqual(28, features['height'])
      self.assertEqual((1, 28, 28, 1), images.shape)
      self.assertEqual(recons_image.shape, images.shape)
      self.assertAllEqual(recons_image, images)

      coord.request_stop()
      for thread in threads:
        thread.join()