예제 #1
0
def driver(argv: argparse.Namespace, model_file_name: str,
           output_model_name: str, output_dir: str):
    log_step(argv.steps, 'LOAD')
    meta_info = get_meta_info(argv)

    model_proto = load_onnx_model(model_file_name)
    model_graph = model_proto.graph  # pylint: disable=no-member
    # print(model_graph)
    # assert len(model_graph) == 1, "An ONNX model contains more than 1 graph: unsupported"
    log.debug("Number of nodes in graph_def: {}".format(len(model_graph.node)))
    log.debug(
        "Number of all input ports (not true inputs) in graph_def: {}".format(
            len(model_graph.input)))
    log.debug("Number of initializers in graph_def: {}".format(
        len(model_graph.initializer)))
    log.debug("Number of real inputs in graph_def: {}".format(
        len(model_graph.input) - len(model_graph.initializer)))
    update_extractors_with_extensions(onnx_op_extractors)

    try:
        graph = protobuf2nx(model_proto)
        log.debug("Number of nodes in NX graph: {}".format(
            graph.number_of_nodes()))
        graph.__setattr__(
            'name',
            output_model_name if output_model_name else model_proto.graph.name)  # pylint: disable=no-member
        graph.graph['layout'] = 'NCHW'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'onnx'
        graph.graph[
            'feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3

        if graph.graph['cmd_params'].generate_experimental_IR_V10:
            version = 10
        else:
            version = 6
        graph.graph[
            'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

    except Exception as e:
        raise Error(
            'Cannot pre-process ONNX graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e
    graph.check_empty_graph(
        'protobuf2nx. It may happen due to problems with loaded model')
    extract_node_attrs(
        graph, lambda node: onnx_op_extractor(
            node, check_for_duplicates(onnx_op_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------
    log_step(argv.steps, 'FRONT')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)
    log_step(argv.steps, 'MIDDLE')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    fuse_pad(graph)
    graph_clean_up_onnx(graph)

    for_graph_and_each_sub_graph_recursively(
        graph, convert_matmul_to_fully_connected)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
    convert_batch_norm(graph)
    graph_clean_up_onnx(graph)

    if not argv.disable_fusing:
        # Converting ScaleShift layer to Mul->Add
        convert_scale_shift_to_mul_add(graph)
        graph_clean_up_onnx(graph)

        # Fusing the sequences of Mul/Add operations
        fuse_mul_add_sequence(graph)
        graph_clean_up_onnx(graph)

        # Fusing linear operation to Convolution
        fuse_linear_ops(graph)
        graph_clean_up_onnx(graph)

    if not argv.disable_gfusing:
        grouped_convolutions_fusing(graph)
        graph_clean_up_onnx(graph)
        if not argv.disable_fusing:
            fuse_linear_ops(graph)
            graph_clean_up_onnx(graph)

    MarkNodesToFuseUpToFakeQuantize().find_and_replace_pattern(graph)
    FakeQuantizeFuse().find_and_replace_pattern(graph)

    AddFakeQuantizeFuse().find_and_replace_pattern(graph)
    MulFakeQuantizeFuse().find_and_replace_pattern(graph)

    convert_muladd_to_scaleshift(graph)
    graph_clean_up_onnx(graph)

    graph_clean_up_onnx(graph)
    convert_add_or_mul_to_scaleshift(graph)  # scale = 1
    graph_clean_up_onnx(graph)

    fuse_pad(graph)
    graph_clean_up_onnx(graph)

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up_onnx(graph)

    FuseReshapesSequence().find_and_replace_pattern(graph)
    RemoveRedundantReshapes().find_and_replace_pattern(graph)

    graph_clean_up_onnx(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    graph_clean_up_onnx(graph)

    log_step(argv.steps, 'BACK')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    for_graph_and_each_sub_graph_recursively(graph, remove_const_ops)

    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    for_graph_and_each_sub_graph_recursively(graph, remove_output_ops)

    log_step(argv.steps, 'EMIT')
    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    meta_info=meta_info)

    return 0
예제 #2
0
def driver(argv, input_model, output_model_name, output_dir):
    log_step(argv.steps, 'LOAD')
    meta_info = get_meta_info(argv)

    EltwiseChecker.enabled = False

    try:
        graph = load_kaldi_model(input_model)
    except Exception as e:
        raise Error('Model Optimizer is not able to parse Kaldi model {}. '.format(input_model) +
                    refer_to_faq_msg(91)) from e
    graph.check_empty_graph('load_kaldi_nnet_model')
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'kaldi'

    if graph.graph['cmd_params'].generate_experimental_IR_V10:
        version = 10
    else:
        version = 6
    graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

    update_extractors_with_extensions(kaldi_type_extractors)
    extract_node_attrs(graph, lambda node: kaldi_extractor(node))

    # --------------------------------- LOAD END ------------------------------------------------------
    log_step(argv.steps, 'FRONT')
    ReplaceLSTMNodePattern().find_and_replace_pattern(graph)
    class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
    log_step(argv.steps, 'MIDDLE')
    graph = partial_infer(graph)

    ReplacePNormNodePattern().find_and_replace_pattern(graph)
    ReplaceMemoryOffsetNodePattern().find_and_replace_pattern(graph)
    ReplaceMemoryOffsetWithMemoryNodePattern().find_and_replace_pattern(graph)
    RemoveMemoryDuplicationPattern().find_and_replace_pattern(graph)
    MergeNeighborSplicePattern().find_and_replace_pattern(graph)
    RemoveUselessCropsPattern().find_and_replace_pattern(graph)
    RemoveIdentity().find_and_replace_pattern(graph)
    graph_clean_up(graph)

    AddSelectBeforeMemoryNodePattern().find_and_replace_pattern(graph)

    ReplaceSpliceNodePattern().find_and_replace_pattern(graph)
    graph_clean_up(graph)

    # The order is intentional, firstly eliminate repeated, then remove redundant
    FuseRepeatedReshapes().find_and_replace_pattern(graph)
    EliminateRedundantReshape().find_and_replace_pattern(graph)
    graph_clean_up(graph)
    graph.check_empty_graph('partial_infer')
    if argv.counts:
        try:
            counts = read_counts_file(argv.counts)
        except Exception as e:
            raise Error('Model Optimizer is not able to read counts file {}'.format(argv.counts) +
                        refer_to_faq_msg(92)) from e

        apply_biases_to_last_layer(graph, counts)

    if argv.remove_output_softmax:
        RemoveLastSoftMaxPattern().find_and_replace_pattern(graph)
        graph_clean_up(graph)
        log.debug("After removing softmax")
        graph.print_graph_stat()

    log_step(argv.steps, 'BACK')
    LeakyReluToReluWithNegativeSlope().find_and_replace_pattern(graph)
    TransposeToPermute().find_and_replace_pattern(graph)
    DivideToEltwises().find_and_replace_pattern(graph)
    SubtractToEltwises().find_and_replace_pattern(graph)
    SimpleEltwiseToEltwiseOp().find_and_replace_pattern(graph)
    for_graph_and_each_sub_graph_recursively(graph, convert_matmul_to_fully_connected)

    # Intentionally after all transformations
    if argv.remove_memory:
        CutMemory().find_and_replace_pattern(graph)
        graph_clean_up(graph)
    ParameterToInput().find_and_replace_pattern(graph)

    KaldiRemoveMemoryOutputBackReplacementPattern().find_and_replace_pattern(graph)
    ForceStrictPrecision().find_and_replace_pattern(graph)
    remove_const_ops(graph)
    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    remove_output_ops(graph)
    log_step(argv.steps, 'EMIT')
    prepare_emit_ir(graph, argv.data_type, output_dir, output_model_name, meta_info=meta_info)
    return 0
예제 #3
0
def tf2nx(argv: argparse.Namespace, model_file_name: str, output_model_name: str, output_dir: str, is_binary: bool):
    """
    Convert TF GraphDef object to NetworkX representation.
    The resulting graph is still TF-specific and needs normalization passes to be applied.
    The specific TF structure assumes each GraphDef node is converted to a single
    NetworkX node, node id is an original TF node name, and edges go directly from one op   to another op.
    """
    log_step(argv.steps, 'LOAD')
    meta_info = get_meta_info(argv)

    if argv.tensorflow_custom_layer_libraries:
        libraries = argv.tensorflow_custom_layer_libraries.split(',')
        for library in libraries:
            log.info('Loading library "{}" with custom operations'.format(library))
            tf.load_op_library(library)

    graph_def, variables_values = load_tf_graph_def(graph_file_name=model_file_name, is_binary=is_binary,
                                                    checkpoint=argv.input_checkpoint,
                                                    user_output_node_names_list=argv.output,
                                                    model_dir=argv.saved_model_dir,
                                                    meta_graph_file=argv.input_meta_graph,
                                                    saved_model_tags=argv.saved_model_tags)

    try:
        tf.import_graph_def(graph_def, name='')
    except:
        log.warning("TensorFlow post-processing of loaded model was unsuccessful. "
                    "This is an optional step that Model Optimizer performs for any input model but it is not usually "
                    "required for all models."
                    "It likely means that the original model is ill-formed. "
                    "Model Optimizer will continue converting this model.")

    log.debug("Number of nodes in graph_def: {}".format(len(graph_def.node)))  # pylint: disable=no-member

    if argv.tensorboard_logdir:
        tensorboard.dump_for_tensorboard(graph_def, argv.tensorboard_logdir)

    update_extractors_with_extensions(tf_op_extractors)

    try:
        graph = protobuf2nx(graph_def)
        graph.__setattr__('name', output_model_name)
        # 'layout' parameter change may cause an issue in EltwiseInputReshape replacer
        # and convert_nhwc_to_nchw(graph)
        graph.graph['layout'] = 'NCHW' if argv.disable_nhwc_to_nchw else 'NHWC'
        graph.graph['cmd_params'] = argv
        graph.graph['fw'] = 'tf'

        if graph.graph['cmd_params'].generate_experimental_IR_V10:
            version = 10
        else:
            version = 6
        graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

        graph.graph['variables_values'] = variables_values
        del variables_values

        graph = restore_edges(graph, get_tf_edges)
        graph = remove_control_dependency_inputs(graph)
    except Exception as e:
        raise Error(
            'Cannot pre-process TensorFlow graph after reading from model file "{}". ' \
            'File is corrupt or has unsupported format. Details: {}. ' +
            refer_to_faq_msg(44),
            model_file_name,
            str(e)
        ) from e

    graph.check_empty_graph('protobuf2nx. It may happen due to problems with loaded model')
    extract_node_attrs(graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------
    log_step(argv.steps, 'FRONT')
    class_registration.apply_replacements(graph, class_registration.ClassType.FRONT_REPLACER)
    log_step(argv.steps, 'MIDDLE')
    class_registration.apply_replacements(graph, class_registration.ClassType.MIDDLE_REPLACER)

    fuse_pad(graph)
    graph_clean_up_tf(graph)

    for_graph_and_each_sub_graph_recursively(graph, convert_matmul_to_fully_connected)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    for_graph_and_each_sub_graph_recursively(graph, lambda graph: mark_unfused_nodes(graph, argv.finegrain_fusing))

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    # IE doesn't support BN with 4 inputs, so we have to split it to two ScaleShift
    convert_batch_norm(graph)
    graph_clean_up_tf(graph)

    if not argv.disable_fusing:
        # Converting ScaleShift layer to Mul->Add
        for_graph_and_each_sub_graph_recursively(graph, convert_scale_shift_to_mul_add)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        # Fusing the sequences of Mul/Add operations
        for_graph_and_each_sub_graph_recursively(graph, fuse_mul_add_sequence)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

        # Fusing linear operation to Convolution
        for_graph_and_each_sub_graph_recursively(graph, fuse_linear_ops)
        for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    if not argv.disable_gfusing:
        for_graph_and_each_sub_graph_recursively(graph, grouped_convolutions_fusing)
        graph_clean_up_tf(graph)
        if not argv.disable_fusing:
            fuse_linear_ops(graph)
            graph_clean_up_tf(graph)

    for_graph_and_each_sub_graph_recursively(graph, EltwiseChecker().find_and_replace_pattern)

    # Converting Mul->Add to ScaleShift node
    for_graph_and_each_sub_graph_recursively(graph, convert_muladd_to_scaleshift)

    # Need to eliminate dead nodes before doing update_fully_connected_shapes
    # because update_fully_connected_shapes does partial inference and dead
    # nodes will lead to sporadic failures.
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)
    for_graph_and_each_sub_graph_recursively(graph, update_fully_connected_shapes)

    for_graph_and_each_sub_graph_recursively(graph, convert_mul_eltwise_to_leaky_relu)
    graph_clean_up_tf(graph)
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, fuse_pad)
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, convert_add_or_mul_to_scaleshift)  # scale = 1
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        for_graph_and_each_sub_graph_recursively(graph, move_scaleshift_to_preprocess)
        graph_clean_up_tf(graph)

    FuseReshapesSequence().find_and_replace_pattern(graph)
    RemoveRedundantReshapes().find_and_replace_pattern(graph)

    EltwiseInputNormalize().find_and_replace_pattern(graph)

    if argv.enable_concat_optimization:
        ConcatOptimization().find_and_replace_pattern(graph)

    for_graph_and_each_sub_graph_recursively(graph, InsertLayoutPropagationTranspose().find_and_replace_pattern)

    LayoutChangeForConstantShapePaths().find_and_replace_pattern(graph)
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, apply_nhwc_to_nchw_permutation)
    for_graph_and_each_sub_graph_recursively(graph, merge_nodes_permutations)
    for_graph_and_each_sub_graph_recursively(graph, permute_data_nodes_attrs)
    for_graph_and_each_sub_graph_recursively(graph, permute_op_nodes_attrs)
    for_graph_and_each_sub_graph_recursively(graph, permute_input_data)

    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    graph.graph['layout'] = 'NCHW'

    log_step(argv.steps, 'BACK')
    class_registration.apply_replacements(graph, class_registration.ClassType.BACK_REPLACER)
    for_graph_and_each_sub_graph_recursively(graph, graph_clean_up_tf)

    for_graph_and_each_sub_graph_recursively(graph, remove_const_ops)
    for_graph_and_each_sub_graph_recursively(graph, CreateConstNodesReplacement().find_and_replace_pattern)

    for_graph_and_each_sub_graph_recursively(graph, remove_output_ops)

    log_step(argv.steps, 'EMIT')
    prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name,
                    meta_info=meta_info)

    return 0
예제 #4
0
def driver(argv: argparse.Namespace,
           proto_file_name: str,
           model_file_name: str,
           output_model_name: str,
           output_dir: str,
           caffe_proto_path: str,
           mean_file: str = "",
           mean_file_offsets: tuple = None,
           custom_layers_mapping_path: str = None):
    log_step(argv.steps, 'LOAD')
    meta_info = get_meta_info(argv)

    caffe_pb2 = loader.import_caffe_pb2(caffe_proto_path)

    proto, model = loader.load_caffe_proto_model(caffe_pb2, proto_file_name,
                                                 model_file_name)

    update_extractors_with_extensions(
        caffe_type_extractors, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.disable_flattening_optional_params if hasattr(
            argv, 'disable_flattening_optional_params') else False)

    try:
        graph, original_shapes = loader.caffe_pb_to_nx(proto, model)
    except ValueError as e:
        raise Error(
            'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11),
            str(e)) from e

    log.debug("After caffe_pb_to_nx")
    graph.print_graph_stat()
    graph.check_empty_graph('load_caffe_proto_model')

    graph.__setattr__('proto_path', proto_file_name)
    graph.__setattr__('caffemodel_path', model_file_name)
    graph.__setattr__('name',
                      getattr(proto, 'name', None) or output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'caffe'
    if graph.graph['cmd_params'].generate_experimental_IR_V10:
        version = 10
    else:
        version = 6
    graph.graph[
        'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

    custom_layers_map = custom_layers_mapping.load_layers_xml(
        custom_layers_mapping_path)
    custom_layers_mapping.update_extractors(
        caffe_type_extractors,
        custom_layers_map, argv.disable_omitting_optional if hasattr(
            argv, 'disable_omitting_optional') else False,
        argv.enable_flattening_nested_params if hasattr(
            argv, 'enable_flattening_nested_params') else False)
    extract_node_attrs(
        graph, lambda node: caffe_extractor(
            node, check_for_duplicates(caffe_type_extractors)))

    # --------------------------------- LOAD END ------------------------------------------------------
    log_step(argv.steps, 'FRONT')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)
    log_step(argv.steps, 'MIDDLE')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    # need this pass even without fusing to convert scale with 2 inputs
    convert_scale_shift_to_mul_add(graph)
    graph_clean_up(graph)

    if not argv.disable_fusing:
        convert_bn_to_mul_add(graph)
        graph_clean_up(graph)

        fuse_mul_add_sequence(graph)
        graph_clean_up(graph)

        fuse_linear_ops(graph)
        graph_clean_up(graph)

    if not argv.disable_resnet_optimization:
        stride_optimization(graph)

    convert_muladd_to_scaleshift(graph)
    convert_matmul_to_fully_connected(graph)
    batch_norm_fuse(graph)
    convert_add_or_mul_to_scaleshift(graph)  # scale = 1
    graph_clean_up(graph)

    log.debug("After graph_cleanup")
    graph.print_graph_stat()

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up(graph)

    FuseReshapesSequence().find_and_replace_pattern(graph)
    RemoveRedundantReshapes().find_and_replace_pattern(graph)

    input_names = find_inputs(graph)
    mf = []
    try:
        if mean_file and len(original_shapes) == 1:
            mf = loader.parse_mean(mean_file, original_shapes[input_names[0]],
                                   mean_file_offsets, caffe_pb2)
        elif mean_file:
            raise Error(
                'Mean file for topologies with multiple inputs is not supported. '
                + refer_to_faq_msg(9))
    except ValueError as e:
        raise Error(
            'Cannot load or process mean file: value error {}. ' +
            refer_to_faq_msg(10), str(e)) from e

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    graph_clean_up(graph)
    log_step(argv.steps, 'BACK')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    remove_const_ops(graph)
    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    remove_output_ops(graph)
    log_step(argv.steps, 'EMIT')
    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    mean_data=mf,
                    input_names=input_names,
                    meta_info=meta_info)
    return 0
예제 #5
0
def driver(argv: argparse.Namespace, input_model: str, output_model_name: str,
           output_dir: str):
    log_step(argv.steps, 'LOAD')
    meta_info = get_meta_info(argv)

    try:
        model_nodes, model_params, model_name, iteration_number = load_symbol_def(
            input_model, argv.input_symbol, argv.input, argv.nd_prefix_name,
            argv.pretrained_model_name, argv.legacy_mxnet_model)
    except (ValueError, mxnet.base.MXNetError) as e:
        raise FrameworkError(
            'The following error happened while loading mxnet model {}: {}. ' +
            refer_to_faq_msg(53), input_model, str(e)) from e

    if argv.nd_prefix_name and argv.pretrained_model_name and argv.save_params_from_nd:
        save_params_file(model_name, model_params._arg_params,
                         model_params._aux_params, iteration_number)

    update_extractors_with_extensions(mxnet_op_extractors)
    graph = symbol2nx(model_nodes, model_params, argv.input)
    graph.check_empty_graph(
        'symbol2nx. It may happen due to problems with loaded model')

    graph.__setattr__('name', output_model_name)
    graph.graph['layout'] = 'NCHW'
    graph.graph['cmd_params'] = argv
    graph.graph['fw'] = 'mxnet'
    graph.graph['feature_dim'] = 1 if graph.graph['layout'] == 'NCHW' else 3

    if graph.graph['cmd_params'].generate_experimental_IR_V10:
        version = 10
    else:
        version = 6
    graph.graph[
        'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version

    extract_node_attrs(graph, mxnet_op_extractor)

    # --------------------------------- LOAD END ------------------------------------------------------
    log_step(argv.steps, 'FRONT')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.FRONT_REPLACER)
    log_step(argv.steps, 'MIDDLE')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.MIDDLE_REPLACER)

    fuse_pad(graph)

    # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes
    mark_unfused_nodes(graph, argv.finegrain_fusing)

    # Converting FusedBatchNorm layer to Mul->Add->Mul->Add sequence
    convert_batch_norm(graph)
    graph_clean_up(graph)

    if not argv.disable_fusing:
        # Converting ScaleShift layer to Mul->Add
        convert_scale_shift_to_mul_add(graph)
        graph_clean_up(graph)

        # Fusing the sequences of Mul/Add operations
        fuse_mul_add_sequence(graph)
        graph_clean_up(graph)

        # Fusing linear operation to Convolution
        fuse_linear_ops(graph)
        graph_clean_up(graph)

    if not argv.disable_resnet_optimization:
        stride_optimization(graph)

    fuse_pad(graph)

    # Converting Mul->Add to ScaleShift node
    convert_muladd_to_scaleshift(graph)
    graph_clean_up(graph)

    convert_add_or_mul_to_scaleshift(graph)  # scale = 1
    graph_clean_up(graph)

    if argv.reverse_input_channels:
        reverse_input_channels(graph)

    if argv.move_to_preprocess:
        move_scaleshift_to_preprocess(graph)
        graph_clean_up(graph)

    pattern = EltwiseInputNormalize()
    pattern.find_and_replace_pattern(graph)

    for_graph_and_each_sub_graph_recursively(
        graph, convert_matmul_to_fully_connected)

    merge_nodes_permutations(graph)
    permute_data_nodes_attrs(graph)
    permute_op_nodes_attrs(graph)

    graph_clean_up(graph)
    log_step(argv.steps, 'BACK')
    class_registration.apply_replacements(
        graph, class_registration.ClassType.BACK_REPLACER)

    for_graph_and_each_sub_graph_recursively(graph, remove_const_ops)
    CreateConstNodesReplacement().find_and_replace_pattern(graph)

    for_graph_and_each_sub_graph_recursively(graph, remove_output_ops)

    log_step(argv.steps, 'EMIT')
    prepare_emit_ir(graph=graph,
                    data_type=argv.data_type,
                    output_dir=output_dir,
                    output_model_name=output_model_name,
                    meta_info=meta_info)
    return 0