def test_build_net_equal_inputs(self): global my_mock_net my_blobs = { 'node_1': FakeValue(np.array([1, 3, 227, 227])), 'node_2': FakeValue(np.array([1, 3, 224, 224])) } my_mock_net = Net(my_blobs) graph = build_graph( self.nodes_attributes, [('node_1', 'node_3'), ('node_2', 'node_3'), ('node_3', 'node_4'), ('node_4', 'op_output')], { 'node_4': { 'shape': None }, 'node_1': { 'shape': np.array([1, 3, 227, 227]) }, 'node_2': { 'shape': np.array([1, 3, 224, 224]) }, 'node_3': { 'top': 'top_node' } }) graph.proto_path = 'path_to_proto' graph.caffemodel_path = 'path_to_proto' build_net(graph) my_mock_net.reshape.assert_not_called() my_mock_net.forward.assert_called_once_with() self.assertIsNotNone(graph.caffe_net)
from mo.graph.graph import Node from mo.ops.convolution import Convolution from mo.utils.unittest.extractors import FakeValue from mo.utils.unittest.graph import build_graph nodes_attributes = { 'conv_input': { 'value': None, 'kind': 'data' }, 'conv_node': { 'type': 'Convolution', 'kind': 'op' }, 'conv_weights': { 'value': FakeValue(None), 'kind': 'data' }, 'conv_output': { 'value': None, 'kind': 'data' }, 'op_output': { 'kind': 'op', 'op': 'Result' } } class TestConvolutionPartialInfer(unittest.TestCase): def test_caffe_conv2d_infer(self):
""" import unittest import numpy as np from mo.front.common.partial_infer.utils import int64_array from mo.graph.graph import Node from mo.ops.convolution import Convolution from mo.utils.error import Error from mo.utils.unittest.extractors import FakeValue from mo.utils.unittest.graph import build_graph nodes_attributes = {'conv_input': {'value': None, 'kind': 'data'}, 'conv_node': {'type': 'Convolution', 'kind': 'op'}, 'conv_weights': {'value': FakeValue(None), 'kind': 'data'}, 'conv_output': {'value': None, 'kind': 'data'}, 'op_output': {'kind': 'op', 'op': 'Result'} } class TestConvolutionPartialInfer(unittest.TestCase): def test_caffe_conv2d_infer(self): graph = build_graph(nodes_attributes, [('conv_input', 'conv_node'), ('conv_weights', 'conv_node'), ('conv_node', 'conv_output'), ('conv_output', 'op_output') ], {'conv_output': {'shape': None}, 'conv_input': {'shape': np.array([1, 3, 227, 227])},
def __init__(self, blobs): self.blobs = blobs self.reshape_blob = MagicMock(return_value=np.array([1, 1, 1, 1])) self.reshape = MagicMock(return_value=np.array([1, 1, 1, 1])) self.forward = MagicMock( return_value={'top_node': FakeValue(np.array([1, 3, 112, 112]))})
See the License for the specific language governing permissions and limitations under the License. """ import unittest import numpy as np from mo.front.common.partial_infer.inner_product import caffe_inner_product from mo.graph.graph import Node from mo.utils.unittest.extractors import FakeValue from mo.utils.unittest.graph import build_graph nodes_attributes = {'node_1': {'value': None, 'kind': 'data'}, 'inner': {'type': 'FullyConnected', 'value': None, 'kind': 'op'}, 'node_2': {'value': FakeValue(None), 'kind': 'data'}, 'node_3': {'value': None, 'kind': 'data'}, 'op_output': { 'kind': 'op', 'op': 'OpOutput'} } class TestInnerPartialInfer(unittest.TestCase): def test_inner_product_infer(self): graph = build_graph(nodes_attributes, [('node_1', 'inner'), ('node_2', 'inner'), ('inner', 'node_3'), ('node_3', 'op_output') ], {'node_3': {'shape': None}, 'node_1': {'shape': np.array([1, 3, 256, 256])},