예제 #1
0
파일: pulseshapes.py 프로젝트: wiwa/qc
def plotShape(pulsef, name, end=14*pi/3):
    shape = plt.figure()
    pulse_time = np.linspace(0, end, 5000)
    plt.plot(pulse_time, [pulsef(t) for t in pulse_time], "b-", label=name)
    plt.legend(loc="best")
    plt.ylabel(r"Amplitude in $a_{max}$")
    plt.xlabel(r"t in $\hbar/a_{max}$")
    plt.ylim([-1.1,1.1])
    plt.xlim([0.,end])
    filename = base + name.replace(" ", "_") + "-shape.png"
    shape.savefig(filename)
예제 #2
0
pulseshape_data = [pulseshape(ti) for ti in tis]
pshape = plt.figure()
plt.plot(tis, pulseshape_data, 'b-')
# plt.show()

plt.ion()
fig, ax = plt.subplots()
fig.suptitle(wave + ":" + ptitle)

p1, = plt.plot(p_t, sym1, 'b--', label="t=1")
p3, = plt.plot(p_t, sym3, 'r-', label="t=3")
p15, = plt.plot(p_t, sym12, 'g--', label="t=12")

plt.xlabel(r"width in $\hbar / a_max$")
plt.ylabel(r"$\phi(\rho_f, \rho_0)$")
plt.legend(loc='best')
plt.show()
plt.pause(0.0001)


def SCORPSEfac(partition):
    def a_SC(t):
        if t <= 0:
            return 0
        if t < ((pi / 3) * hoa):
            return -a_max
        if t <= 2 * pi * hoa:
            return a_max
        if t < (partition):
            return -a_max
        return 0
예제 #3
0
#     sym: mkInfo(sym_pi, tau)
#     }

p_t = []

shapefig = plt.figure()
chi_time = np.linspace(0 - 1, mytau + 1, 1000)
if do_sym:
    plt.plot(chi_time, [sym_pi(t) for t in chi_time],
             "c-",
             label="Symmetric Pulse shape")
if do_asym:
    plt.plot(chi_time, [asym_pi(t) for t in chi_time],
             "m-",
             label="Antisymmetric Pulse shape")
plt.legend(loc="best")

plt.ion()
fig, ax = plt.subplots()

pulse_plots = []
if do_pi:
    p_pi, = plt.plot(p_t, fids_pi, 'b--', label="pi pulse")
    pulse_plots.append(p_pi)
if do_c:
    p_c, = plt.plot(p_t, fids_C, 'r-', label="CORPSE pulse")
    pulse_plots.append(p_c)
if do_sc:
    p_sc, = plt.plot(p_t, fids_SC, 'r--', label="SCORPSE pulse")
    pulse_plots.append(p_sc)
    #r"$f(x) = x^2$; width $\pi$, 2 periods, range $-a_{max}$ to $a_{max}$"