while (IOThreadsFlag): time.sleep(0.01) pbar.close() # type: ignore pbar_dup.close() elif torch.cuda.is_available() and not args.cpu: # Process on GPU if 'v1.8.model' in args.model: from model.RIFE_HD import Model # type: ignore else: from model.RIFE_HDv2 import Model # type: ignore model = Model() model.load_model(args.model, -1) model.eval() model.device() print('Trained model loaded: %s' % args.model) first_image = cv2.imread(os.path.join(args.input, files_list[0]), cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)[:, :, ::-1].copy() h, w, _ = first_image.shape ph = ((h - 1) // 64 + 1) * 64 pw = ((w - 1) // 64 + 1) * 64 padding = (0, pw - w, 0, ph - h) device = torch.device("cuda") torch.set_grad_enabled(False) torch.backends.cudnn.enabled = True
warnings.filterwarnings("ignore") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): torch.set_grad_enabled(False) torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True parser = argparse.ArgumentParser( description='Interpolation for a pair of images') parser.add_argument('--img', dest='img', nargs=2, required=True) parser.add_argument('--exp', default=4, type=int) args = parser.parse_args() model = Model() model.load_model('./train_log', -1) model.eval() model.device() img0 = cv2.imread(args.img[0]) img1 = cv2.imread(args.img[1]) img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) n, c, h, w = img0.shape ph = ((h - 1) // 32 + 1) * 32 pw = ((w - 1) // 32 + 1) * 32 padding = (0, pw - w, 0, ph - h) img0 = F.pad(img0, padding) img1 = F.pad(img1, padding)
warnings.filterwarnings("ignore") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.set_grad_enabled(False) if torch.cuda.is_available(): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True parser = argparse.ArgumentParser( description='Interpolation for a pair of images') parser.add_argument('--img', dest='img', nargs=2, required=True) parser.add_argument('--exp', default=4, type=int) args = parser.parse_args() model = Model() model.load_model( os.path.join(os.path.dirname(os.path.realpath(__file__)), 'train_log'), -1) model.eval() model.device() if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0) img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0) else: img0 = cv2.imread(args.img[0]) img1 = cv2.imread(args.img[1]) img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) /