def aspectExtractor(sentence): # create instance of config config = Config() # build model model = ASPECTModel(config) model.build() model.restore_session(config.dir_model) # create dataset test = CoNLLDataset(config.filename_test, config.processing_word, config.processing_tag, config.max_iter) # evaluate and interact model.evaluate(test) preds=interactive_shell(model , sentence) return preds
def init(): """ This function is to load the trained Keras model. :return - None """ # load the pre-trained tensorflow model global model, graph # create instance of config config = Config() # build model model = ASPECTModel(config) model.build() model.restore_session(config.dir_model) graph = tf.get_default_graph()
def main(): # create instance of config config = Config() # build model model = ASPECTModel(config) model.build() model.restore_session(config.dir_model) # create dataset test = GloveDataset(config.filename_test, config.processing_word, config.processing_tag, config.max_iter) # evaluate and interact model.evaluate(test) # saver = tf.train.Saver() # save_path = saver.save(sess, "/export/model.ckpt") # print("Model saved") interactive_shell(model)
def main(): # create instance of config config = Config() # build model model = ASPECTModel(config) model.build() # model.restore_session("results/crf/model.weights/") # optional, restore weights # model.reinitialize_weights("proj") # create datasets dev = CoNLLDataset(config.filename_dev, config.processing_word, config.processing_tag, config.max_iter) train = CoNLLDataset(config.filename_train, config.processing_word, config.processing_tag, config.max_iter) # train model model.train(train, dev)