def test_single_predictor_model_training(self): model_proto = model_pb2.Model() text_format.Merge(SINGLE_PREDICTOR_MODEL_TEXT_PROTO, model_proto) model_object = model_builder.build(model_proto, True) test_groundtruth_text_list = [ tf.constant(b'hello', dtype=tf.string), tf.constant(b'world', dtype=tf.string) ] model_object.provide_groundtruth( {'groundtruth_text': test_groundtruth_text_list}) test_input_image = tf.random_uniform(shape=[2, 32, 100, 3], minval=0, maxval=255, dtype=tf.float32, seed=1) prediction_dict = model_object.predict( model_object.preprocess(test_input_image)) loss = model_object.loss(prediction_dict) with self.test_session() as sess: sess.run( [tf.global_variables_initializer(), tf.tables_initializer()]) outputs = sess.run({'loss': loss}) print(outputs['loss'])
def test_stn_multi_predictor_model_inference(self): model_proto = model_pb2.Model() text_format.Merge(STN_MULTIPLE_PREDICTOR_MODEL_TEXT_PROTO, model_proto) model_object = model_builder.build(model_proto, False) test_groundtruth_text_list = [ tf.constant(b'hello', dtype=tf.string), tf.constant(b'world', dtype=tf.string) ] model_object.provide_groundtruth( {'groundtruth_text': test_groundtruth_text_list}) test_input_image = tf.random_uniform(shape=[2, 32, 100, 3], minval=0, maxval=255, dtype=tf.float32, seed=1) prediction_dict = model_object.predict( model_object.preprocess(test_input_image)) recognition_dict = model_object.postprocess(prediction_dict) with self.test_session() as sess: sess.run( [tf.global_variables_initializer(), tf.tables_initializer()]) outputs = sess.run(recognition_dict) print(outputs)
def test_build_attention_model_single_branch(self): model_text_proto = """ attention_recognition_model { feature_extractor { convnet { crnn_net { net_type: SINGLE_BRANCH conv_hyperparams { op: CONV regularizer { l2_regularizer { weight: 1e-4 } } initializer { variance_scaling_initializer { } } batch_norm { } } summarize_activations: false } } bidirectional_rnn { fw_bw_rnn_cell { lstm_cell { num_units: 256 forget_bias: 1.0 initializer { orthogonal_initializer {} } } } rnn_regularizer { l2_regularizer { weight: 1e-4 } } num_output_units: 256 fc_hyperparams { op: FC activation: RELU initializer { variance_scaling_initializer { } } regularizer { l2_regularizer { weight: 1e-4 } } } } summarize_activations: true } predictor { name: "ForwardPredictor" bahdanau_attention_predictor { reverse: false rnn_cell { lstm_cell { num_units: 256 forget_bias: 1.0 initializer { orthogonal_initializer { } } } } rnn_regularizer { l2_regularizer { weight: 1e-4 } } num_attention_units: 128 max_num_steps: 10 multi_attention: false beam_width: 1 reverse: false label_map { character_set { text_string: "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" delimiter: "" } label_offset: 2 } loss { sequence_cross_entropy_loss { sequence_normalize: false sample_normalize: true } } } } } """ model_proto = model_pb2.Model() text_format.Merge(model_text_proto, model_proto) model_object = model_builder.build(model_proto, True) test_groundtruth_text_list = [ tf.constant(b'hello', dtype=tf.string), tf.constant(b'world', dtype=tf.string)] model_object.provide_groundtruth(test_groundtruth_text_list) test_input_image = tf.random_uniform( shape=[2, 32, 100, 3], minval=0, maxval=255, dtype=tf.float32, seed=1) prediction_dict = model_object.predict(model_object.preprocess(test_input_image)) loss = model_object.loss(prediction_dict) with self.test_session() as sess: sess.run([ tf.global_variables_initializer(), tf.tables_initializer()]) outputs = sess.run({'loss': loss}) print(outputs['loss'])