def __init__(self, args, conv=common.default_conv, BBlock=common.BBlock): super(BSR, self).__init__() #n_resblocks = args.n_resblocks n_feats = args.n_feats kernel_size = 3 n_colors = args.n_colors self.scale_idx = 0 act = nn.ReLU(True) self.is_fcSim = args.is_fcSim # Sampling layer if args.is_fcSim: self.fc_sim = common.FlatCamSampSim(args.batch_size) self.add_noise = common.AddNoise(nSig=args.sigma) self.init_recon1 = common.FlatCamSimInitConv1() self.init_recon2 = common.FlatCamSimInitConv2() self.init_recon3 = common.FlatCamSimInitConv3() self.init_recon4 = common.FlatCamSimInitFix() self.shuffle = ChannelShuffle(groups=3) self.conv = nn.Conv2d(in_channels=4 * 3, out_channels=3, kernel_size=1, padding=0, stride=1, groups=3)
def __init__(self, args, conv=common.default_conv, BBlock = common.BBlock): super(BSR, self).__init__() #n_resblocks = args.n_resblocks n_feats = args.n_feats kernel_size = 3 n_colors = args.n_colors self.scale_idx = 0 act = nn.ReLU(True) self.is_fcSim = args.is_fcSim # Sampling layer if args.is_fcSim: self.fc_sim = common.FlatCamSampSim(args.batch_size) self.add_noise = common.AddNoise(nSig = args.sigma) self.init_recon = common.FlatCamSimInitConv2() self.DWT = common.DWT() self.IWT = common.IWT() n = args.n_resblocks m_head = [BBlock(conv, 4 * n_colors, 160, 3, act=act)] d_l1 = [] for _ in range(n): d_l1.append(BBlock(conv, 160, 160, 3, act=act)) d_l2 = [BBlock(conv, 640, n_feats * 4, 3, act=act)] for _ in range(n): d_l2.append(BBlock(conv, n_feats * 4, n_feats * 4, 3, act=act)) pro_l3 = [BBlock(conv, n_feats * 16, n_feats * 4, 3, act=act)] for _ in range(n*2): pro_l3.append(BBlock(conv, n_feats * 4, n_feats * 4, 3, act=act)) pro_l3.append(BBlock(conv, n_feats * 4, n_feats * 16, 3, act=act)) i_l2 = [] for _ in range(n): i_l2.append(BBlock(conv, n_feats * 4, n_feats * 4, 3, act=act)) i_l2.append(BBlock(conv, n_feats * 4,640, 3, act=act)) i_l1 = [] for _ in range(n): i_l1.append((BBlock(conv,160, 160, 3, act=act))) m_tail = [conv(160, 4 * n_colors, 3)] self.head = nn.Sequential(*m_head) self.d_l2 = nn.Sequential(*d_l2) self.d_l1 = nn.Sequential(*d_l1) self.pro_l3 = nn.Sequential(*pro_l3) self.i_l2 = nn.Sequential(*i_l2) self.i_l1 = nn.Sequential(*i_l1) self.tail = nn.Sequential(*m_tail)
def __init__(self, args, conv=common.default_conv, BBlock=common.BBlock): super(BSR, self).__init__() #n_resblocks = args.n_resblocks n_feats = args.n_feats kernel_size = 3 n_colors = args.n_colors self.scale_idx = 0 act = nn.ReLU(True) self.is_fcSim = args.is_fcSim # Sampling layer if args.is_fcSim: self.fc_sim = common.FlatCamSampSim(args.batch_size) self.add_noise = common.AddNoise(nSig=args.sigma) self.init_recon = common.FlatCamSimInitConv2()