예제 #1
0
def load_model(config_file, device):
    config_folder = os.path.join('config_folder', config_file)
    option_file = os.path.join(config_folder, 'options.pickle')
    checkpoint_file = os.path.join(config_folder, 'checkpoint.pyt')

    checkpoint = torch.load(checkpoint_file, map_location='cpu')
    _, hidden_config, noise_config = utils.load_options(option_file)
    noiser = Noiser(noise_config, device)
    model = Hidden(hidden_config, device, noiser, tb_logger=None)
    utils.model_from_checkpoint(model, checkpoint)

    return model
예제 #2
0
파일: embed.py 프로젝트: chenhsiu48/HiDDeN
def init_prepare(args):
    args.device = torch.device("cuda" if not args.disable_gpu
                               and torch.cuda.is_available() else "cpu")

    args.output = f'{args.run_folder}/output'
    utils.ensure_dir(args.output)

    if args.arch == 'hidden':
        args.options_file = f'{args.run_folder}/options-and-config.pickle'
        args.checkpoint_file = f'{args.run_folder}/checkpoints/hidden-best-model.pyt'
        train_options, hidden_config, noise_config = utils.load_options(
            args.options_file)
        noiser = Noiser(noise_config, device=args.device)

        checkpoint = torch.load(args.checkpoint_file, map_location=args.device)
        hidden_net = Hidden(hidden_config, args.device, noiser, None)
        utils.model_from_checkpoint(hidden_net, checkpoint)
        args.model = hidden_net

        args.block_size = hidden_config.H
        args.message_length = hidden_config.message_length
        args.hidden_config = hidden_config
        args.in_channels = hidden_config.input_channels
    elif args.arch == 'ms-hidden':
        checkpoint = torch.load(f'{args.run_folder}/trained-model.pth')
        options = argparse.Namespace(**checkpoint['option'])
        options.device = args.device
        noiser = Noiser(options.noise, device=args.device)

        model = nets.MS_Hidden(options, noiser).to(args.device)
        model.load_state_dict(checkpoint['model'])
        args.model = model

        args.block_size = options.block_size
        args.message_length = options.message
        args.in_channels = options.in_channels
        args.layers = options.layers
예제 #3
0
def train(model: Hidden, device: torch.device,
          hidden_config: HiDDenConfiguration, train_options: TrainingOptions,
          this_run_folder: str, tb_logger):
    """
    Trains the HiDDeN model
    :param model: The model
    :param device: torch.device object, usually this is GPU (if avaliable), otherwise CPU.
    :param hidden_config: The network configuration
    :param train_options: The training settings
    :param this_run_folder: The parent folder for the current training run to store training artifacts/results/logs.
    :param tb_logger: TensorBoardLogger object which is a thin wrapper for TensorboardX logger.
                Pass None to disable TensorboardX logging
    :return:
    """

    train_data, val_data = utils.get_data_loaders(hidden_config, train_options)

    images_to_save = 8
    saved_images_size = (512, 512)

    best_epoch = train_options.best_epoch
    best_cond = train_options.best_cond
    for epoch in range(train_options.start_epoch,
                       train_options.number_of_epochs + 1):
        logging.info(
            f'\nStarting epoch {epoch}/{train_options.number_of_epochs} [{best_epoch}]'
        )
        training_losses = defaultdict(functions.AverageMeter)
        epoch_start = time.time()
        for image, _ in tqdm(train_data, ncols=80):
            image = image.to(device)  #.squeeze(0)
            message = torch.Tensor(
                np.random.choice(
                    [0, 1],
                    (image.shape[0], hidden_config.message_length))).to(device)
            losses, _ = model.train_on_batch([image, message])

            for name, loss in losses.items():
                training_losses[name].update(loss)

        train_duration = time.time() - epoch_start
        logging.info('Epoch {} training duration {:.2f} sec'.format(
            epoch, train_duration))
        logging.info('-' * 40)
        utils.write_losses(os.path.join(this_run_folder, 'train.csv'),
                           training_losses, epoch, train_duration)
        if tb_logger is not None:
            tb_logger.save_losses('train_loss', training_losses, epoch)
            tb_logger.save_grads(epoch)
            tb_logger.save_tensors(epoch)
            tb_logger.writer.flush()

        validation_losses = defaultdict(functions.AverageMeter)
        logging.info('Running validation for epoch {}/{}'.format(
            epoch, train_options.number_of_epochs))
        val_image_patches = ()
        val_encoded_patches = ()
        val_noised_patches = ()
        for image, _ in tqdm(val_data, ncols=80):
            image = image.to(device)  #.squeeze(0)
            message = torch.Tensor(
                np.random.choice(
                    [0, 1],
                    (image.shape[0], hidden_config.message_length))).to(device)
            losses, (encoded_images, noised_images,
                     decoded_messages) = model.validate_on_batch(
                         [image, message])
            for name, loss in losses.items():
                validation_losses[name].update(loss)

            if hidden_config.enable_fp16:
                image = image.float()
                encoded_images = encoded_images.float()
            pick = np.random.randint(0, image.shape[0])
            val_image_patches += (F.interpolate(
                image[pick:pick + 1, :, :, :].cpu(),
                size=(hidden_config.W, hidden_config.H)), )
            val_encoded_patches += (F.interpolate(
                encoded_images[pick:pick + 1, :, :, :].cpu(),
                size=(hidden_config.W, hidden_config.H)), )
            val_noised_patches += (F.interpolate(
                noised_images[pick:pick + 1, :, :, :].cpu(),
                size=(hidden_config.W, hidden_config.H)), )

        if tb_logger is not None:
            tb_logger.save_losses('val_loss', validation_losses, epoch)
            tb_logger.writer.flush()

        val_image_patches = torch.stack(val_image_patches).squeeze(1)
        val_encoded_patches = torch.stack(val_encoded_patches).squeeze(1)
        val_noised_patches = torch.stack(val_noised_patches).squeeze(1)
        utils.save_images(val_image_patches[:images_to_save, :, :, :],
                          val_encoded_patches[:images_to_save, :, :, :],
                          val_noised_patches[:images_to_save, :, :, :],
                          epoch,
                          os.path.join(this_run_folder, 'images'),
                          resize_to=saved_images_size)

        curr_cond = validation_losses['encoder_mse'].avg + validation_losses[
            'bitwise-error'].avg
        if best_cond is None or curr_cond < best_cond:
            best_cond = curr_cond
            best_epoch = epoch

        utils.log_progress(validation_losses)
        logging.info('-' * 40)
        utils.save_checkpoint(model, train_options.experiment_name, epoch,
                              best_epoch, best_cond,
                              os.path.join(this_run_folder, 'checkpoints'))
        logging.info(
            f'Current best epoch = {best_epoch}, loss = {best_cond:.6f}')
        utils.write_losses(os.path.join(this_run_folder, 'validation.csv'),
                           validation_losses, epoch,
                           time.time() - epoch_start)
예제 #4
0
def main():
    # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    parser.add_argument('--hostname',
                        default=socket.gethostname(),
                        help='the  host name of the running server')
    # parser.add_argument('--size', '-s', default=128, type=int, help='The size of the images (images are square so this is height and width).')
    parser.add_argument('--data-dir',
                        '-d',
                        required=True,
                        type=str,
                        help='The directory where the data is stored.')
    parser.add_argument(
        '--runs_root',
        '-r',
        default=os.path.join('.', 'experiments'),
        type=str,
        help='The root folder where data about experiments are stored.')
    parser.add_argument('--batch-size',
                        '-b',
                        default=1,
                        type=int,
                        help='Validation batch size.')

    args = parser.parse_args()

    if args.hostname == 'ee898-System-Product-Name':
        args.data_dir = '/home/ee898/Desktop/chaoning/ImageNet'
        args.hostname = 'ee898'
    elif args.hostname == 'DL178':
        args.data_dir = '/media/user/SSD1TB-2/ImageNet'
    else:
        args.data_dir = '/workspace/data_local/imagenet_pytorch'
    assert args.data_dir

    print_each = 25

    completed_runs = [
        o for o in os.listdir(args.runs_root)
        if os.path.isdir(os.path.join(args.runs_root, o))
        and o != 'no-noise-defaults'
    ]

    print(completed_runs)

    write_csv_header = True
    current_run = args.runs_root
    print(f'Run folder: {current_run}')
    options_file = os.path.join(current_run, 'options-and-config.pickle')
    train_options, hidden_config, noise_config = utils.load_options(
        options_file)
    train_options.train_folder = os.path.join(args.data_dir, 'val')
    train_options.validation_folder = os.path.join(args.data_dir, 'val')
    train_options.batch_size = args.batch_size
    checkpoint, chpt_file_name = utils.load_last_checkpoint(
        os.path.join(current_run, 'checkpoints'))
    print(f'Loaded checkpoint from file {chpt_file_name}')

    noiser = Noiser(noise_config, device, 'jpeg')
    model = Hidden(hidden_config, device, noiser, tb_logger=None)
    utils.model_from_checkpoint(model, checkpoint)

    print('Model loaded successfully. Starting validation run...')
    _, val_data = utils.get_data_loaders(hidden_config, train_options)
    file_count = len(val_data.dataset)
    if file_count % train_options.batch_size == 0:
        steps_in_epoch = file_count // train_options.batch_size
    else:
        steps_in_epoch = file_count // train_options.batch_size + 1

    with torch.no_grad():
        noises = ['webp_10', 'webp_25', 'webp_50', 'webp_75', 'webp_90']
        for noise in noises:
            losses_accu = {}
            step = 0
            for image, _ in val_data:
                step += 1
                image = image.to(device)
                message = torch.Tensor(
                    np.random.choice(
                        [0, 1], (image.shape[0],
                                 hidden_config.message_length))).to(device)
                losses, (
                    encoded_images, noised_images,
                    decoded_messages) = model.validate_on_batch_specific_noise(
                        [image, message], noise=noise)
                if not losses_accu:  # dict is empty, initialize
                    for name in losses:
                        losses_accu[name] = AverageMeter()
                for name, loss in losses.items():
                    losses_accu[name].update(loss)
                if step % print_each == 0 or step == steps_in_epoch:
                    print(f'Step {step}/{steps_in_epoch}')
                    utils.print_progress(losses_accu)
                    print('-' * 40)

            # utils.print_progress(losses_accu)
            write_validation_loss(os.path.join(args.runs_root,
                                               'validation_run.csv'),
                                  losses_accu,
                                  noise,
                                  checkpoint['epoch'],
                                  write_header=write_csv_header)
            write_csv_header = False
def train(model: Hidden, device: torch.device,
          hidden_config: HiDDenConfiguration, train_options: TrainingOptions,
          this_run_folder: str, tb_logger):
    """
    Trains the HiDDeN model
    :param model: The model
    :param device: torch.device object, usually this is GPU (if avaliable), otherwise CPU.
    :param hidden_config: The network configuration
    :param train_options: The training settings
    :param this_run_folder: The parent folder for the current training run to store training artifacts/results/logs.
    :param tb_logger: TensorBoardLogger object which is a thin wrapper for TensorboardX logger.
                Pass None to disable TensorboardX logging
    :return:
    """

    train_data, val_data = utils.get_data_loaders(hidden_config, train_options)
    file_count = len(train_data.dataset)
    if file_count % train_options.batch_size == 0:
        steps_in_epoch = file_count // train_options.batch_size
    else:
        steps_in_epoch = file_count // train_options.batch_size + 1

    print_each = 10
    images_to_save = 8
    saved_images_size = (512, 512)

    for epoch in range(train_options.start_epoch,
                       train_options.number_of_epochs + 1):
        logging.info('\nStarting epoch {}/{}'.format(
            epoch, train_options.number_of_epochs))
        logging.info('Batch size = {}\nSteps in epoch = {}'.format(
            train_options.batch_size, steps_in_epoch))
        training_losses = defaultdict(AverageMeter)
        epoch_start = time.time()
        step = 1
        #train
        for image, _ in train_data:
            image = image.to(device)
            """
            message = torch.Tensor(np.random.choice([0, 1], (image.shape[0], hidden_config.message_length))).to(device)
            losses, _ = model.train_on_batch([image, message])
            print(losses)
            """
            #crop imgs
            imgs = cropImg(32, image)
            #iterate img
            bitwise_arr = []
            main_losses = None
            encoded_imgs = []
            for img in imgs:
                img = img.to(device)
                message = torch.Tensor(
                    np.random.choice(
                        [0, 1], (img.shape[0],
                                 hidden_config.message_length))).to(device)
                losses, (encoded_images, noised_images,
                         decoded_messages) = model.train_on_batch(
                             [img, message])
                encoded_imgs.append(
                    encoded_images[0][0].cpu().detach().numpy())
                main_losses = losses
                for name, loss in losses.items():
                    if (name == 'bitwise-error  '):
                        bitwise_arr.append(loss)
            Total = 0
            Vcount = 0
            V_average = 0
            H_average = 0
            for i in range(0, len(encoded_imgs) - 1):
                if ((i + 1) % 4 != 0):
                    img = encoded_imgs[i]
                    img_next = encoded_imgs[i + 1]
                    average_img = 0
                    average_img_next = 0
                    for j in range(0, 32):
                        for k in range(0, 10):
                            average_img = average_img + img[j][31 - k]
                            average_img_next = average_img_next + img_next[j][k]
                    average_blocking = np.abs(average_img -
                                              average_img_next) / 320
                    V_average = V_average + average_blocking
                    for j in range(0, 32):
                        distinct = np.abs(img[j][31] - img_next[j][0])
                        Total = Total + 1
                        if (distinct > 0.5):
                            Vcount = Vcount + 1
            V_average = V_average / 12
            Hcount = 0
            for i in range(0, len(encoded_imgs) - 4):
                img = encoded_imgs[i]
                img_next = encoded_imgs[i + 4]
                average_img = 0
                average_img_next = 0
                for j in range(0, 32):
                    for k in range(0, 10):
                        average_img = average_img + img[31 - k][j]
                        average_img_next = average_img_next + img_next[k][j]
                average_blocking = np.abs(average_img - average_img_next) / 320
                H_average = H_average + average_blocking
                for j in range(0, 32):
                    distinct = np.abs(img[31][j] - img_next[0][j])
                    Total = Total + 1
                    if (distinct > 0.5):
                        Hcount = Hcount + 1
            H_average = H_average / 12

            bitwise_arr = np.array(bitwise_arr)
            bitwise_avg = np.average(bitwise_arr)
            #blocking_loss = (Vcount+Hcount)/Total
            blocking_loss = (H_average + V_average) / 2

            for name, loss in main_losses.items():
                if (name == 'bitwise-error  '):
                    training_losses[name].update(bitwise_avg)
                else:
                    if (name == 'blocking_effect'):
                        training_losses[name].update(blocking_loss)
                    else:
                        training_losses[name].update(loss)

            if step % print_each == 0 or step == steps_in_epoch:
                logging.info('Epoch: {}/{} Step: {}/{}'.format(
                    epoch, train_options.number_of_epochs, step,
                    steps_in_epoch))
                utils.log_progress(training_losses)
                logging.info('-' * 40)
            step += 1

        train_duration = time.time() - epoch_start
        logging.info('Epoch {} training duration {:.2f} sec'.format(
            epoch, train_duration))
        logging.info('-' * 40)
        utils.write_losses(os.path.join(this_run_folder, 'train.csv'),
                           training_losses, epoch, train_duration)
        if tb_logger is not None:
            tb_logger.save_losses(training_losses, epoch)
            tb_logger.save_grads(epoch)
            tb_logger.save_tensors(epoch)

        first_iteration = True
        validation_losses = defaultdict(AverageMeter)
        logging.info('Running validation for epoch {}/{}'.format(
            epoch, train_options.number_of_epochs))

        #val
        for image, _ in val_data:
            image = image.to(device)
            #crop imgs
            imgs = cropImg(32, image)
            #iterate img
            bitwise_arr = []
            main_losses = None
            encoded_imgs = []
            blocking_imgs = []
            for img in imgs:
                img = img.to(device)
                message = torch.Tensor(
                    np.random.choice(
                        [0, 1], (img.shape[0],
                                 hidden_config.message_length))).to(device)
                losses, (encoded_images, noised_images,
                         decoded_messages) = model.validate_on_batch(
                             [img, message])
                encoded_imgs.append(encoded_images)
                blocking_imgs.append(
                    encoded_images[0][0].cpu().detach().numpy())
                main_losses = losses
                for name, loss in losses.items():
                    if (name == 'bitwise-error  '):
                        bitwise_arr.append(loss)

            Total = 0
            Vcount = 0
            V_average = 0
            H_average = 0
            for i in range(0, len(blocking_imgs) - 1):
                if ((i + 1) % 4 != 0):
                    img = blocking_imgs[i]
                    img_next = blocking_imgs[i + 1]
                    average_img = 0
                    average_img_next = 0
                    for j in range(0, 32):
                        for k in range(0, 10):
                            average_img = average_img + img[j][31 - k]
                            average_img_next = average_img_next + img_next[j][k]
                    average_blocking = np.abs(average_img -
                                              average_img_next) / 320
                    V_average = V_average + average_blocking
                    for j in range(0, 32):
                        distinct = np.abs(img[j][31] - img_next[j][0])
                        Total = Total + 1
                        if (distinct > 0.5):
                            Vcount = Vcount + 1
            V_average = V_average / 12
            Hcount = 0
            for i in range(0, len(blocking_imgs) - 4):
                img = blocking_imgs[i]
                img_next = blocking_imgs[i + 4]
                for j in range(0, 32):
                    for k in range(0, 10):
                        average_img = average_img + img[31 - k][j]
                        average_img_next = average_img_next + img_next[k][j]
                average_blocking = np.abs(average_img - average_img_next) / 320
                H_average = H_average + average_blocking
                for j in range(0, 32):
                    distinct = np.abs(img[31][j] - img_next[0][j])
                    Total = Total + 1
                    if (distinct > 0.5):
                        Hcount = Hcount + 1
            H_average = H_average / 12

            bitwise_arr = np.array(bitwise_arr)
            bitwise_avg = np.average(bitwise_arr)
            #blocking_loss = (Vcount+Hcount)/Total
            blocking_loss = (H_average + V_average) / 2
            for name, loss in main_losses.items():
                if (name == 'bitwise-error  '):
                    validation_losses[name].update(bitwise_avg)
                else:
                    if (name == 'blocking_effect'):
                        validation_losses[name].update(blocking_loss)
                    else:
                        validation_losses[name].update(loss)
            #concat image
            encoded_images = concatImgs(encoded_imgs)

            if first_iteration:
                if hidden_config.enable_fp16:
                    image = image.float()
                    encoded_images = encoded_images.float()
                utils.save_images(
                    image.cpu()[:images_to_save, :, :, :],
                    encoded_images[:images_to_save, :, :, :].cpu(),
                    epoch,
                    os.path.join(this_run_folder, 'images'),
                    resize_to=saved_images_size)
                first_iteration = False

        utils.log_progress(validation_losses)
        logging.info('-' * 40)
        utils.save_checkpoint(model, train_options.experiment_name, epoch,
                              os.path.join(this_run_folder, 'checkpoints'))
        utils.write_losses(os.path.join(this_run_folder, 'validation.csv'),
                           validation_losses, epoch,
                           time.time() - epoch_start)
예제 #6
0
파일: main.py 프로젝트: dlshu/RS-GAN-v1
def main():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parent_parser = argparse.ArgumentParser(
        description='Training of HiDDeN nets')
    subparsers = parent_parser.add_subparsers(dest='command',
                                              help='Sub-parser for commands')
    new_run_parser = subparsers.add_parser('new', help='starts a new run')
    new_run_parser.add_argument('--data-dir',
                                '-d',
                                required=True,
                                type=str,
                                help='The directory where the data is stored.')
    # Anno dir
    new_run_parser.add_argument(
        '--anno-dir',
        '-a',
        type=str,
        help=
        'The directory where the annotations are stored. Specify only if you have annotations in a different folder.'
    )

    new_run_parser.add_argument('--batch-size',
                                '-b',
                                required=True,
                                type=int,
                                help='The batch size.')
    new_run_parser.add_argument('--epochs',
                                '-e',
                                default=300,
                                type=int,
                                help='Number of epochs to run the simulation.')
    new_run_parser.add_argument('--name',
                                required=True,
                                type=str,
                                help='The name of the experiment.')

    new_run_parser.add_argument(
        '--size',
        '-s',
        default=128,
        type=int,
        help=
        'The size of the images (images are square so this is height and width).'
    )
    new_run_parser.add_argument('--message',
                                '-m',
                                default=256,
                                type=int,
                                help='The length in bits of the watermark.')
    new_run_parser.add_argument(
        '--continue-from-folder',
        '-c',
        default='',
        type=str,
        help=
        'The folder from where to continue a previous run. Leave blank if you are starting a new experiment.'
    )
    # parser.add_argument('--tensorboard', dest='tensorboard', action='store_true',
    #                     help='If specified, use adds a Tensorboard log. On by default')
    new_run_parser.add_argument('--tensorboard',
                                action='store_true',
                                help='Use to switch on Tensorboard logging.')
    new_run_parser.add_argument('--enable-fp16',
                                dest='enable_fp16',
                                action='store_true',
                                help='Enable mixed-precision training.')

    new_run_parser.add_argument(
        '--noise',
        nargs='*',
        action=NoiseArgParser,
        help=
        "Noise layers configuration. Use quotes when specifying configuration, e.g. 'cropout((0.55, 0.6), (0.55, 0.6))'"
    )

    new_run_parser.set_defaults(tensorboard=False)
    new_run_parser.set_defaults(enable_fp16=False)
    new_run_parser.add_argument('--vocab-path',
                                '-v',
                                type=str,
                                default='./data/vocab.pkl',
                                help='load the vocab')

    continue_parser = subparsers.add_parser('continue',
                                            help='Continue a previous run')
    continue_parser.add_argument(
        '--folder',
        '-f',
        required=True,
        type=str,
        help='Continue from the last checkpoint in this folder.')
    continue_parser.add_argument(
        '--data-dir',
        '-d',
        required=False,
        type=str,
        help=
        'The directory where the data is stored. Specify a value only if you want to override the previous value.'
    )
    # Anno dir
    continue_parser.add_argument(
        '--anno-dir',
        '-a',
        required=False,
        type=str,
        help=
        'The directory where the annotations are stored. Specify a value only if you want to override the previous value.'
    )
    continue_parser.add_argument(
        '--epochs',
        '-e',
        required=False,
        type=int,
        help=
        'Number of epochs to run the simulation. Specify a value only if you want to override the previous value.'
    )

    args = parent_parser.parse_args()
    checkpoint = None
    loaded_checkpoint_file_name = None

    with open(args.vocab_path, 'rb') as f:
        vocab = pickle.load(f)

    if args.command == 'continue':
        this_run_folder = args.folder
        options_file = os.path.join(this_run_folder,
                                    'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(
            options_file)
        checkpoint, loaded_checkpoint_file_name = utils.load_last_checkpoint(
            os.path.join(this_run_folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch'] + 1
        if args.data_dir is not None:
            train_options.train_folder = os.path.join(args.data_dir, 'train')
            train_options.validation_folder = os.path.join(
                args.data_dir, 'val')
        if args.epochs is not None:
            if train_options.start_epoch < args.epochs:
                train_options.number_of_epochs = args.epochs
            else:
                print(
                    f'Command-line specifies of number of epochs = {args.epochs}, but folder={args.folder} '
                    f'already contains checkpoint for epoch = {train_options.start_epoch}.'
                )
                exit(1)

    else:
        assert args.command == 'new'
        start_epoch = 1

        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs,
            train_folder=os.path.join(args.data_dir, 'train'),
            validation_folder=os.path.join(args.data_dir, 'val'),
            ann_train=os.path.join(args.data_dir, 'ann_train.json'),
            ann_val=os.path.join(args.data_dir, 'ann_val.json'),
            runs_folder=os.path.join('.', 'runs'),
            start_epoch=start_epoch,
            experiment_name=args.name)

        noise_config = args.noise if args.noise is not None else []
        hidden_config = HiDDenConfiguration(H=args.size,
                                            W=args.size,
                                            message_length=args.message,
                                            encoder_blocks=4,
                                            encoder_channels=64,
                                            decoder_blocks=7,
                                            decoder_channels=64,
                                            use_discriminator=True,
                                            use_vgg=False,
                                            discriminator_blocks=3,
                                            discriminator_channels=64,
                                            decoder_loss=1,
                                            encoder_loss=0.7,
                                            adversarial_loss=1e-3,
                                            vocab_size=len(vocab),
                                            enable_fp16=args.enable_fp16)

        this_run_folder = utils.create_folder_for_run(
            train_options.runs_folder, args.name)
        with open(os.path.join(this_run_folder, 'options-and-config.pickle'),
                  'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)

    logging.basicConfig(level=logging.INFO,
                        format='%(message)s',
                        handlers=[
                            logging.FileHandler(
                                os.path.join(
                                    this_run_folder,
                                    f'{train_options.experiment_name}.log')),
                            logging.StreamHandler(sys.stdout)
                        ])
    if (args.command == 'new' and args.tensorboard) or \
            (args.command == 'continue' and os.path.isdir(os.path.join(this_run_folder, 'tb-logs'))):
        logging.info('Tensorboard is enabled. Creating logger.')
        from tensorboard_logger import TensorBoardLogger
        tb_logger = TensorBoardLogger(os.path.join(this_run_folder, 'tb-logs'))
    else:
        tb_logger = None

    noiser = Noiser(noise_config, device)

    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.command == 'continue':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        logging.info(
            f'Loading checkpoint from file {loaded_checkpoint_file_name}')
        utils.model_from_checkpoint(model, checkpoint)

    logging.info('HiDDeN model: {}\n'.format(model.to_stirng()))
    logging.info('Model Configuration:\n')
    logging.info(pprint.pformat(vars(hidden_config)))
    logging.info('\nNoise configuration:\n')
    logging.info(pprint.pformat(str(noise_config)))
    logging.info('\nTraining train_options:\n')
    logging.info(pprint.pformat(vars(train_options)))

    train(model, device, hidden_config, train_options, this_run_folder,
          tb_logger, vocab)
def train(model: Hidden,
          device: torch.device,
          hidden_config: HiDDenConfiguration,
          train_options: TrainingOptions,
          this_run_folder: str,
          tb_logger):
    """
    Trains the HiDDeN model
    :param model: The model
    :param device: torch.device object, usually this is GPU (if avaliable), otherwise CPU.
    :param hidden_config: The network configuration
    :param train_options: The training settings
    :param this_run_folder: The parent folder for the current training run to store training artifacts/results/logs.
    :param tb_logger: TensorBoardLogger object which is a thin wrapper for TensorboardX logger.
                Pass None to disable TensorboardX logging
    :return:
    """

    train_data, val_data = utils.get_data_loaders(hidden_config, train_options)
    block_size = hidden_config.block_size
    block_number = int(hidden_config.H/hidden_config.block_size)
    val_folder = train_options.validation_folder
    loss_type = train_options.loss_mode
    m_length = hidden_config.message_length
    alpha = train_options.alpha
    img_names = listdir(val_folder+"/valid_class")
    img_names.sort()
    out_folder = train_options.output_folder
    default = train_options.default
    beta = train_options.beta
    crop_width = int(beta*block_size)
    file_count = len(train_data.dataset)
    if file_count % train_options.batch_size == 0:
        steps_in_epoch = file_count // train_options.batch_size
    else:
        steps_in_epoch = file_count // train_options.batch_size + 1

    print_each = 10
    images_to_save = 8
    saved_images_size = (512, 512)
    icount = 0
    plot_block = []

    for epoch in range(train_options.start_epoch, train_options.number_of_epochs + 1):
        logging.info('\nStarting epoch {}/{}'.format(epoch, train_options.number_of_epochs))
        logging.info('Batch size = {}\nSteps in epoch = {}'.format(train_options.batch_size, steps_in_epoch))
        training_losses = defaultdict(AverageMeter)
        epoch_start = time.time()
        step = 1
        #train
        for image, _ in train_data:
            image = image.to(device)
            #crop imgs into blocks
            imgs, modified_imgs, entropies = cropImg(block_size,image,crop_width,alpha)
            bitwise_arr=[]
            main_losses = None
            encoded_imgs = []
            batch = 0 
            for img, modified_img, entropy in zip(imgs,modified_imgs, entropies):
                img=img.to(device)
                modified_img = modified_img.to(device)
                entropy = entropy.to(device)
                
                message = torch.Tensor(np.random.choice([0, 1], (img.shape[0], m_length))).to(device)
                losses, (encoded_images, noised_images, decoded_messages) = \
                    model.train_on_batch([img, message, modified_img, entropy,loss_type])
                encoded_imgs.append(encoded_images)
                batch = encoded_images.shape[0]
                #get loss in the last block
                if main_losses is None:
                    main_losses = losses
                    for k in losses:
                        main_losses[k] = losses[k]/len(imgs)
                else:
                    for k in main_losses:
                        main_losses[k] += losses[k]/len(imgs)

            #blocking effect loss calculation
            blocking_loss = blocking_value(encoded_imgs,batch,block_size,block_number)
          
            #update bitwise training loss
            for name, loss in main_losses.items():
                if(default == False  and name == 'blocking_effect'):
                    training_losses[name].update(blocking_loss)
                else:
                    training_losses[name].update(loss) 
            #statistic
            if step % print_each == 0 or step == steps_in_epoch:
                logging.info(
                    'Epoch: {}/{} Step: {}/{}'.format(epoch, train_options.number_of_epochs, step, steps_in_epoch))
                utils.log_progress(training_losses)
                logging.info('-' * 40)
            step += 1

        train_duration = time.time() - epoch_start
        logging.info('Epoch {} training duration {:.2f} sec'.format(epoch, train_duration))
        logging.info('-' * 40)
        utils.write_losses(os.path.join(this_run_folder, 'train.csv'), training_losses, epoch, train_duration)
        if tb_logger is not None:
            tb_logger.save_losses(training_losses, epoch)
            tb_logger.save_grads(epoch)
            tb_logger.save_tensors(epoch)

        first_iteration = True
        validation_losses = defaultdict(AverageMeter)
        logging.info('Running validation for epoch {}/{}'.format(epoch, train_options.number_of_epochs))

        #validation
        ep_blocking = 0
        ep_total = 0
     
        for image, _ in val_data:
            image = image.to(device)
            #crop imgs
            imgs, modified_imgs, entropies = cropImg(block_size,image,crop_width,alpha)
            bitwise_arr=[]
            main_losses = None
            encoded_imgs = []
            batch = 0
          
            for img, modified_img, entropy in zip(imgs,modified_imgs, entropies):
                img=img.to(device)
                modified_img = modified_img.to(device)
                entropy = entropy.to(device)
                
                message = torch.Tensor(np.random.choice([0, 1], (img.shape[0], m_length))).to(device)
                losses, (encoded_images, noised_images, decoded_messages) = \
                    model.train_on_batch([img, message, modified_img, entropy,loss_type])
                encoded_imgs.append(encoded_images)
                batch = encoded_images.shape[0]
                #get loss in the last block
                if main_losses is None:
                    main_losses = losses
                    for k in losses:
                        main_losses[k] = losses[k]/len(imgs)
                else:
                    for k in main_losses:
                        main_losses[k] += losses[k]/len(imgs)
                
            #blocking value for plotting
            blocking_loss = blocking_value(encoded_imgs,batch,block_size,block_number)
            ep_blocking = ep_blocking+ blocking_loss
            ep_total = ep_total+1

            for name, loss in main_losses.items():
                if(default == False  and name == 'blocking_effect'):
                    validation_losses[name].update(blocking_loss)
                else:
                    validation_losses[name].update(loss) 
            #concat image
            encoded_images = concatImgs(encoded_imgs,block_number)
            #save_image(encoded_images,"enc_img"+str(epoch)+".png")
            #save_image(image,"original_img"+str(epoch)+".png")
            if first_iteration:
                if hidden_config.enable_fp16:
                    image = image.float()
                    encoded_images = encoded_images.float()
                utils.save_images(image.cpu()[:images_to_save, :, :, :],
                                  encoded_images[:images_to_save, :, :, :].cpu(),
                                  epoch,
                                  os.path.join(this_run_folder, 'images'), resize_to=saved_images_size)
                first_iteration = False
            #save validation in the last epoch
            if(epoch == train_options.number_of_epochs):
                if(train_options.ats):
                    for i in range(0,batch):
                        image = encoded_images[i].cpu()
                        image = (image + 1) / 2
                        f_dst = out_folder+"/"+img_names[icount]
                        save_image(image,f_dst)
                        icount = icount+1
        #append block effect for plotting
        plot_block.append(ep_blocking/ep_total)
    
        utils.log_progress(validation_losses)
        logging.info('-' * 40)
        utils.save_checkpoint(model, train_options.experiment_name, epoch, os.path.join(this_run_folder, 'checkpoints'))
        utils.write_losses(os.path.join(this_run_folder, 'validation.csv'), validation_losses, epoch,
                           time.time() - epoch_start)
예제 #8
0
def train_own_noise(model: Hidden, device: torch.device,
                    hidden_config: HiDDenConfiguration,
                    train_options: TrainingOptions, this_run_folder: str,
                    tb_logger, noise):
    """
    Trains the HiDDeN model
    :param model: The model
    :param device: torch.device object, usually this is GPU (if avaliable), otherwise CPU.
    :param hidden_config: The network configuration
    :param train_options: The training settings
    :param this_run_folder: The parent folder for the current training run to store training artifacts/results/logs.
    :param tb_logger: TensorBoardLogger object which is a thin wrapper for TensorboardX logger.
                Pass None to disable TensorboardX logging
    :return:
    """

    train_data, val_data = utils.get_data_loaders(hidden_config, train_options)
    file_count = len(train_data.dataset)
    if file_count % train_options.batch_size == 0:
        steps_in_epoch = file_count // train_options.batch_size
    else:
        steps_in_epoch = file_count // train_options.batch_size + 1
    steps_in_epoch = 313

    print_each = 10
    images_to_save = 8
    saved_images_size = (
        512, 512)  # for qualitative check purpose to use a larger size

    for epoch in range(train_options.start_epoch,
                       train_options.number_of_epochs + 1):
        logging.info('\nStarting epoch {}/{}'.format(
            epoch, train_options.number_of_epochs))
        logging.info('Batch size = {}\nSteps in epoch = {}'.format(
            train_options.batch_size, steps_in_epoch))
        training_losses = defaultdict(AverageMeter)

        if train_options.video_dataset:
            random.shuffle(train_data.dataset)

        epoch_start = time.time()
        step = 1
        for image, _ in train_data:
            image = image.to(device)
            message = torch.Tensor(
                np.random.choice(
                    [0, 1],
                    (image.shape[0], hidden_config.message_length))).to(device)
            losses, _ = model.train_on_batch([image, message])

            for name, loss in losses.items():
                training_losses[name].update(loss)
            if step % print_each == 0 or step == steps_in_epoch:
                #import pdb; pdb.set_trace()
                logging.info('Epoch: {}/{} Step: {}/{}'.format(
                    epoch, train_options.number_of_epochs, step,
                    steps_in_epoch))
                utils.log_progress(training_losses)
                logging.info('-' * 40)
            step += 1
            if step == steps_in_epoch:
                break

        train_duration = time.time() - epoch_start
        logging.info('Epoch {} training duration {:.2f} sec'.format(
            epoch, train_duration))
        logging.info('-' * 40)
        utils.write_losses(os.path.join(this_run_folder, 'train.csv'),
                           training_losses, epoch, train_duration)
        if tb_logger is not None:
            tb_logger.save_losses(training_losses, epoch)
            tb_logger.save_grads(epoch)
            tb_logger.save_tensors(epoch)

        first_iteration = True
        validation_losses = defaultdict(AverageMeter)
        logging.info('Running validation for epoch {}/{} for noise {}'.format(
            epoch, train_options.number_of_epochs, noise))
        step = 1
        for image, _ in val_data:
            image = image.to(device)
            message = torch.Tensor(
                np.random.choice(
                    [0, 1],
                    (image.shape[0], hidden_config.message_length))).to(device)
            losses, (
                encoded_images, noised_images,
                decoded_messages) = model.validate_on_batch_specific_noise(
                    [image, message], noise=noise)
            for name, loss in losses.items():
                validation_losses[name].update(loss)
            if first_iteration:
                if hidden_config.enable_fp16:
                    image = image.float()
                    encoded_images = encoded_images.float()
                utils.save_images(
                    image.cpu()[:images_to_save, :, :, :],
                    encoded_images[:images_to_save, :, :, :].cpu(),
                    epoch,
                    os.path.join(this_run_folder, 'images'),
                    resize_to=saved_images_size)
                first_iteration = False
            step += 1
            if step == steps_in_epoch // 10:
                break

        utils.log_progress(validation_losses)
        logging.info('-' * 40)
        utils.save_checkpoint(model, train_options.experiment_name, epoch,
                              os.path.join(this_run_folder, 'checkpoints'))
        utils.write_losses(
            os.path.join(this_run_folder, 'validation_' + noise + '.csv'),
            validation_losses, epoch,
            time.time() - epoch_start)
예제 #9
0
def train(model: Hidden, device: torch.device,
          hidden_config: HiDDenConfiguration, train_options: TrainingOptions,
          this_run_folder: str, tb_logger, vocab):
    """
    Trains the HiDDeN model
    :param model: The model
    :param device: torch.device object, usually this is GPU (if avaliable), otherwise CPU.
    :param hidden_config: The network configuration
    :param train_options: The training settings
    :param this_run_folder: The parent folder for the current training run to store training artifacts/results/logs.
    :param tb_logger: TensorBoardLogger object which is a thin wrapper for TensorboardX logger.
                Pass None to disable TensorboardX logging
    :return:
    """

    train_data, val_data = utils.get_data_loaders(hidden_config, train_options,
                                                  vocab)
    file_count = len(train_data.dataset)
    if file_count % train_options.batch_size == 0:
        steps_in_epoch = file_count // train_options.batch_size
    else:
        steps_in_epoch = file_count // train_options.batch_size + 1

    print_each = 10
    images_to_save = 8
    saved_images_size = (512, 512)

    for epoch in range(train_options.start_epoch,
                       train_options.number_of_epochs + 1):
        logging.info('\nStarting epoch {}/{}'.format(
            epoch, train_options.number_of_epochs))
        logging.info('Batch size = {}\nSteps in epoch = {}'.format(
            train_options.batch_size, steps_in_epoch))
        training_losses = defaultdict(AverageMeter)
        epoch_start = time.time()
        step = 1
        for image, ekeys, dkeys, caption, length in train_data:
            image, caption, ekeys, dkeys = image.to(device), caption.to(
                device), ekeys.to(device), dkeys.to(device)

            losses, _ = model.train_on_batch(
                [image, ekeys, dkeys, caption, length])

            for name, loss in losses.items():
                training_losses[name].update(loss)
            if step % print_each == 0 or step == steps_in_epoch:
                logging.info('Epoch: {}/{} Step: {}/{}'.format(
                    epoch, train_options.number_of_epochs, step,
                    steps_in_epoch))
                utils.log_progress(training_losses)
                logging.info('-' * 40)
            step += 1

        train_duration = time.time() - epoch_start
        logging.info('Epoch {} training duration {:.2f} sec'.format(
            epoch, train_duration))
        logging.info('-' * 40)
        utils.write_losses(os.path.join(this_run_folder, 'train.csv'),
                           training_losses, epoch, train_duration)
        if tb_logger is not None:
            tb_logger.save_losses(training_losses, epoch)
            tb_logger.save_grads(epoch)
            tb_logger.save_tensors(epoch)

        first_iteration = True
        validation_losses = defaultdict(AverageMeter)
        logging.info('Running validation for epoch {}/{}'.format(
            epoch, train_options.number_of_epochs))
        for image, ekeys, dkeys, caption, length in val_data:
            image, caption, ekeys, dkeys = image.to(device), caption.to(
                device), ekeys.to(device), dkeys.to(device)

            losses, (encoded_images, noised_images, decoded_messages, predicted_sents) = \
                model.validate_on_batch([image, ekeys, dkeys, caption, length])

            #print(predicted)
            #exit()
            predicted_sents = predicted_sents.cpu().numpy()
            for i in range(train_options.batch_size):
                try:
                    #print(''.join([vocab.idx2word[int(w)] + ' ' for w in predicted.cpu().numpy()[i::train_options.batch_size]][1:length[i]-1]))
                    print("".join([
                        vocab.idx2word[int(idx)] + ' '
                        for idx in predicted_sents[i]
                    ]))
                    break
                except IndexError:
                    print(f'{i}th batch does not have enough length.')

            for name, loss in losses.items():
                validation_losses[name].update(loss)
            if first_iteration:
                if hidden_config.enable_fp16:
                    image = image.float()
                    encoded_images = encoded_images.float()
                utils.save_images(
                    image.cpu()[:images_to_save, :, :, :],
                    encoded_images[:images_to_save, :, :, :].cpu(),
                    epoch,
                    os.path.join(this_run_folder, 'images'),
                    resize_to=saved_images_size)
                first_iteration = False

        utils.log_progress(validation_losses)
        logging.info('-' * 40)
        utils.save_checkpoint(model, train_options.experiment_name, epoch,
                              os.path.join(this_run_folder, 'checkpoints'))
        utils.write_losses(os.path.join(this_run_folder, 'validation.csv'),
                           validation_losses, epoch,
                           time.time() - epoch_start)
예제 #10
0
def train(model: Hidden, device: torch.device,
          hidden_config: HiDDenConfiguration, train_options: TrainingOptions,
          this_run_folder: str, tb_logger):
    """
    Trains the HiDDeN model
    :param model: The model
    :param device: torch.device object, usually this is GPU (if avaliable), otherwise CPU.
    :param hidden_config: The network configuration
    :param train_options: The training settings
    :param this_run_folder: The parent folder for the current training run to store training artifacts/results/logs.
    :param tb_logger: TensorBoardLogger object which is a thin wrapper for TensorboardX logger.
                Pass None to disable TensorboardX logging
    :return:
    """

    train_data, val_data = utils.get_data_loaders(hidden_config, train_options)
    file_count = len(train_data.dataset)
    if file_count % train_options.batch_size == 0:
        steps_in_epoch = file_count // train_options.batch_size
    else:
        steps_in_epoch = file_count // train_options.batch_size + 1

    print_each = 10
    images_to_save = 8
    saved_images_size = (512, 512)

    for epoch in range(train_options.start_epoch,
                       train_options.number_of_epochs + 1):
        print('\nStarting epoch {}/{}'.format(epoch,
                                              train_options.number_of_epochs))
        print('Batch size = {}\nSteps in epoch = {}'.format(
            train_options.batch_size, steps_in_epoch))
        losses_accu = {}
        epoch_start = time.time()
        step = 1
        for image, _ in train_data:
            image = image.to(device)
            message = torch.Tensor(
                np.random.choice(
                    [0, 1],
                    (image.shape[0], hidden_config.message_length))).to(device)
            losses, _ = model.train_on_batch([image, message])
            if not losses_accu:  # dict is empty, initialize
                for name in losses:
                    losses_accu[name] = []

            for name, loss in losses.items():
                losses_accu[name].append(loss)
            if step % print_each == 0 or step == steps_in_epoch:
                print('Epoch: {}/{} Step: {}/{}'.format(
                    epoch, train_options.number_of_epochs, step,
                    steps_in_epoch))
                utils.print_progress(losses_accu)
                print('-' * 40)
            step += 1

        train_duration = time.time() - epoch_start
        print('Epoch {} training duration {:.2f} sec'.format(
            epoch, train_duration))
        print('-' * 40)
        utils.write_losses(os.path.join(this_run_folder, 'train.csv'),
                           losses_accu, epoch, train_duration)
        if tb_logger is not None:
            tb_logger.save_losses(losses_accu, epoch)
            tb_logger.save_grads(epoch)
            tb_logger.save_tensors(epoch)

        first_iteration = True

        print('Running validation for epoch {}/{}'.format(
            epoch, train_options.number_of_epochs))
        for image, _ in val_data:
            image = image.to(device)
            message = torch.Tensor(
                np.random.choice(
                    [0, 1],
                    (image.shape[0], hidden_config.message_length))).to(device)
            losses, (encoded_images, noised_images,
                     decoded_messages) = model.validate_on_batch(
                         [image, message])
            if not losses_accu:  # dict is empty, initialize
                for name in losses:
                    losses_accu[name] = []
            for name, loss in losses.items():
                losses_accu[name].append(loss)
            if first_iteration:
                utils.save_images(
                    image.cpu()[:images_to_save, :, :, :],
                    encoded_images[:images_to_save, :, :, :].cpu(),
                    epoch,
                    os.path.join(this_run_folder, 'images'),
                    resize_to=saved_images_size)
                first_iteration = False

        utils.print_progress(losses_accu)
        print('-' * 40)
        utils.save_checkpoint(model, epoch, losses_accu,
                              os.path.join(this_run_folder, 'checkpoints'))
        utils.write_losses(os.path.join(this_run_folder, 'validation.csv'),
                           losses_accu, epoch,
                           time.time() - epoch_start)
예제 #11
0
def main():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    parser.add_argument('--size', '-s', default=128, type=int)
    parser.add_argument('--data-dir', '-d', required=True, type=str)

    parser.add_argument('--runs-folder',
                        '-sf',
                        default=os.path.join('.', 'runs'),
                        type=str)
    parser.add_argument('--message', '-m', default=30, type=int)
    parser.add_argument('--epochs', '-e', default=400, type=int)
    parser.add_argument('--batch-size', '-b', required=True, type=int)
    parser.add_argument('--continue-from-folder', '-c', default='', type=str)
    parser.add_argument('--tensorboard',
                        dest='tensorboard',
                        action='store_true')
    parser.add_argument('--no-tensorboard',
                        dest='tensorboard',
                        action='store_false')
    parser.set_defaults(tensorboard=True)

    args = parser.parse_args()

    checkpoint = None
    if args.continue_from_folder != '':
        this_run_folder = args.continue_from_folder
        train_options, hidden_config, noise_config = utils.load_options(
            this_run_folder)
        checkpoint = utils.load_last_checkpoint(
            os.path.join(this_run_folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch']
    else:
        start_epoch = 1
        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs,
            train_folder=os.path.join(args.data_dir, 'train'),
            validation_folder=os.path.join(args.data_dir, 'val'),
            runs_folder=os.path.join('.', 'runs'),
            start_epoch=start_epoch)

        # noise_config = [
        #     {
        #         'type': 'resize',
        #         'resize_ratio': 0.4
        # }]
        noise_config = []
        hidden_config = HiDDenConfiguration(H=args.size,
                                            W=args.size,
                                            message_length=args.message,
                                            encoder_blocks=4,
                                            encoder_channels=64,
                                            decoder_blocks=7,
                                            decoder_channels=64,
                                            use_discriminator=True,
                                            use_vgg=False,
                                            discriminator_blocks=3,
                                            discriminator_channels=64,
                                            decoder_loss=1,
                                            encoder_loss=0.7,
                                            adversarial_loss=1e-3)

        this_run_folder = utils.create_folder_for_run(train_options)
        with open(os.path.join(this_run_folder, 'options-and-config.pickle'),
                  'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)

    noiser = Noiser(noise_config, device)

    if args.tensorboard:
        print('Tensorboard is enabled. Creating logger.')
        from tensorboard_logger import TensorBoardLogger
        tb_logger = TensorBoardLogger(os.path.join(this_run_folder, 'tb-logs'))
    else:
        tb_logger = None

    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.continue_from_folder != '':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        utils.model_from_checkpoint(model, checkpoint)

    print('HiDDeN model: {}\n'.format(model.to_stirng()))
    print('Model Configuration:\n')
    pprint.pprint(vars(hidden_config))
    print('\nNoise configuration:\n')
    pprint.pprint(str(noise_config))
    print('\nTraining train_options:\n')
    pprint.pprint(vars(train_options))
    print()

    train(model, device, hidden_config, train_options, this_run_folder,
          tb_logger)
예제 #12
0
def main():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parent_parser = argparse.ArgumentParser(
        description='Training of HiDDeN nets')
    subparsers = parent_parser.add_subparsers(dest='command',
                                              help='Sub-parser for commands')
    new_run_parser = subparsers.add_parser('new', help='starts a new run')
    new_run_parser.add_argument('--data-dir',
                                '-d',
                                required=True,
                                type=str,
                                help='The directory where the data is stored.')
    new_run_parser.add_argument('--batch-size',
                                '-b',
                                required=True,
                                type=int,
                                help='The batch size.')
    new_run_parser.add_argument('--epochs',
                                '-e',
                                default=300,
                                type=int,
                                help='Number of epochs to run the simulation.')
    new_run_parser.add_argument('--name',
                                required=True,
                                type=str,
                                help='The name of the experiment.')
    new_run_parser.add_argument('--adv_loss',
                                default=0,
                                required=False,
                                type=float,
                                help='Coefficient of the adversarial loss.')
    new_run_parser.add_argument('--residual',
                                default=0,
                                required=False,
                                type=int,
                                help='If to use residual or not.')
    new_run_parser.add_argument('--video_dataset',
                                default=0,
                                required=False,
                                type=int,
                                help='If to use video dataset or not.')
    new_run_parser.add_argument(
        '--save-dir',
        '-sd',
        default='runs',
        required=True,
        type=str,
        help='The save directory where the result is stored.')

    new_run_parser.add_argument(
        '--size',
        '-s',
        default=128,
        type=int,
        help=
        'The size of the images (images are square so this is height and width).'
    )
    new_run_parser.add_argument('--message',
                                '-m',
                                default=30,
                                type=int,
                                help='The length in bits of the watermark.')
    new_run_parser.add_argument(
        '--continue-from-folder',
        '-c',
        default='',
        type=str,
        help=
        'The folder from where to continue a previous run. Leave blank if you are starting a new experiment.'
    )
    # parser.add_argument('--tensorboard', dest='tensorboard', action='store_true',
    #                     help='If specified, use adds a Tensorboard log. On by default')
    new_run_parser.add_argument('--tensorboard',
                                action='store_true',
                                help='Use to switch on Tensorboard logging.')
    new_run_parser.add_argument('--enable-fp16',
                                dest='enable_fp16',
                                action='store_true',
                                help='Enable mixed-precision training.')

    new_run_parser.add_argument(
        '--noise',
        nargs='*',
        action=NoiseArgParser,
        help=
        "Noise layers configuration. Use quotes when specifying configuration, e.g. 'cropout((0.55, 0.6), (0.55, 0.6))'"
    )
    new_run_parser.add_argument('--hostname',
                                default=socket.gethostname(),
                                help='the  host name of the running server')
    new_run_parser.add_argument(
        '--cover-dependent',
        default=1,
        required=False,
        type=int,
        help='If to use cover dependent architecture or not.')
    new_run_parser.add_argument('--jpeg_type',
                                '-j',
                                required=False,
                                type=str,
                                default='jpeg',
                                help='Jpeg type used in the combined2 noise.')

    new_run_parser.set_defaults(tensorboard=False)
    new_run_parser.set_defaults(enable_fp16=False)

    continue_parser = subparsers.add_parser('continue',
                                            help='Continue a previous run')
    continue_parser.add_argument(
        '--folder',
        '-f',
        required=True,
        type=str,
        help='Continue from the last checkpoint in this folder.')
    continue_parser.add_argument(
        '--data-dir',
        '-d',
        required=False,
        type=str,
        help=
        'The directory where the data is stored. Specify a value only if you want to override the previous value.'
    )
    continue_parser.add_argument(
        '--epochs',
        '-e',
        required=False,
        type=int,
        help=
        'Number of epochs to run the simulation. Specify a value only if you want to override the previous value.'
    )

    # continue_parser.add_argument('--tensorboard', action='store_true',
    #                             help='Override the previous setting regarding tensorboard logging.')

    # Setting up a seed for debug
    seed = 123
    torch.manual_seed(seed)
    np.random.seed(seed)

    args = parent_parser.parse_args()
    checkpoint = None
    loaded_checkpoint_file_name = None
    print(args.cover_dependent)

    if not args.video_dataset:
        if args.hostname == 'ee898-System-Product-Name':
            args.data_dir = '/home/ee898/Desktop/chaoning/ImageNet'
            args.hostname = 'ee898'
        elif args.hostname == 'DL178':
            args.data_dir = '/media/user/SSD1TB-2/ImageNet'
        else:
            args.data_dir = '/workspace/data_local/imagenet_pytorch'
    else:
        if args.hostname == 'ee898-System-Product-Name':
            args.data_dir = '/home/ee898/Desktop/chaoning/ImageNet'
            args.hostname = 'ee898'
        elif args.hostname == 'DL178':
            args.data_dir = '/media/user/SSD1TB-2/ImageNet'
        else:
            args.data_dir = './oops_dataset/oops_video'
    assert args.data_dir

    if args.command == 'continue':
        this_run_folder = args.folder
        options_file = os.path.join(this_run_folder,
                                    'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(
            options_file)
        checkpoint, loaded_checkpoint_file_name = utils.load_last_checkpoint(
            os.path.join(this_run_folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch'] + 1
        if args.data_dir is not None:
            train_options.train_folder = os.path.join(args.data_dir, 'train')
            train_options.validation_folder = os.path.join(
                args.data_dir, 'val')
        if args.epochs is not None:
            if train_options.start_epoch < args.epochs:
                train_options.number_of_epochs = args.epochs
            else:
                print(
                    f'Command-line specifies of number of epochs = {args.epochs}, but folder={args.folder} '
                    f'already contains checkpoint for epoch = {train_options.start_epoch}.'
                )
                exit(1)

    else:
        assert args.command == 'new'
        start_epoch = 1
        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs,
            train_folder=os.path.join(args.data_dir, 'train'),
            validation_folder=os.path.join(args.data_dir, 'val'),
            runs_folder=os.path.join('.', args.save_dir),
            start_epoch=start_epoch,
            experiment_name=args.name,
            video_dataset=args.video_dataset)

        noise_config = args.noise if args.noise is not None else []
        hidden_config = HiDDenConfiguration(
            H=args.size,
            W=args.size,
            message_length=args.message,
            encoder_blocks=4,
            encoder_channels=64,
            decoder_blocks=7,
            decoder_channels=64,
            use_discriminator=True,
            use_vgg=False,
            discriminator_blocks=3,
            discriminator_channels=64,
            decoder_loss=1,
            encoder_loss=0.7,
            adversarial_loss=args.adv_loss,
            cover_dependent=args.cover_dependent,
            residual=args.residual,
            enable_fp16=args.enable_fp16)

        this_run_folder = utils.create_folder_for_run(
            train_options.runs_folder, args.name)
        with open(os.path.join(this_run_folder, 'options-and-config.pickle'),
                  'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)

    logging.basicConfig(level=logging.INFO,
                        format='%(message)s',
                        handlers=[
                            logging.FileHandler(
                                os.path.join(
                                    this_run_folder,
                                    f'{train_options.experiment_name}.log')),
                            logging.StreamHandler(sys.stdout)
                        ])
    if (args.command == 'new' and args.tensorboard) or \
            (args.command == 'continue' and os.path.isdir(os.path.join(this_run_folder, 'tb-logs'))):
        logging.info('Tensorboard is enabled. Creating logger.')
        from tensorboard_logger import TensorBoardLogger
        tb_logger = TensorBoardLogger(os.path.join(this_run_folder, 'tb-logs'))
    else:
        tb_logger = None

    noiser = Noiser(noise_config, device, args.jpeg_type)
    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.command == 'continue':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        logging.info(
            f'Loading checkpoint from file {loaded_checkpoint_file_name}')
        utils.model_from_checkpoint(model, checkpoint)

    logging.info('HiDDeN model: {}\n'.format(model.to_stirng()))
    logging.info('Model Configuration:\n')
    logging.info(pprint.pformat(vars(hidden_config)))
    logging.info('\nNoise configuration:\n')
    logging.info(pprint.pformat(str(noise_config)))
    logging.info('\nTraining train_options:\n')
    logging.info(pprint.pformat(vars(train_options)))

    # train(model, device, hidden_config, train_options, this_run_folder, tb_logger)
    # train_other_noises(model, device, hidden_config, train_options, this_run_folder, tb_logger)
    if str(args.noise[0]) == "WebP()":
        noise = 'webp'
    elif str(args.noise[0]) == "JpegCompression2000()":
        noise = 'jpeg2000'
    elif str(args.noise[0]) == "MPEG4()":
        noise = 'mpeg4'
    elif str(args.noise[0]) == "H264()":
        noise = 'h264'
    elif str(args.noise[0]) == "XVID()":
        noise = 'xvid'
    elif str(args.noise[0]) == "DiffQFJpegCompression2()":
        noise = 'diff_qf_jpeg2'
    elif str(args.noise[0]) == "DiffCorruptions()":
        noise = 'diff_corruptions'
    else:
        noise = 'jpeg'
    train_own_noise(model, device, hidden_config, train_options,
                    this_run_folder, tb_logger, noise)
예제 #13
0
def main():
    # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
    device = torch.device('cpu')

    parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    # parser.add_argument('--size', '-s', default=128, type=int, help='The size of the images (images are square so this is height and width).')
    parser.add_argument('--data-dir',
                        '-d',
                        required=True,
                        type=str,
                        help='The directory where the data is stored.')
    parser.add_argument(
        '--runs_root',
        '-r',
        default=os.path.join('.', 'experiments'),
        type=str,
        help='The root folder where data about experiments are stored.')

    args = parser.parse_args()
    print_each = 25

    completed_runs = [
        o for o in os.listdir(args.runs_root)
        if os.path.isdir(os.path.join(args.runs_root, o))
        and o != 'no-noise-defaults'
    ]

    print(completed_runs)

    write_csv_header = True
    for run_name in completed_runs:
        current_run = os.path.join(args.runs_root, run_name)
        print(f'Run folder: {current_run}')
        options_file = os.path.join(current_run, 'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(
            options_file)
        train_options.train_folder = os.path.join(args.data_dir, 'val')
        train_options.validation_folder = os.path.join(args.data_dir, 'val')
        train_options.batch_size = 4
        checkpoint = utils.load_last_checkpoint(
            os.path.join(current_run, 'checkpoints'))

        noiser = Noiser(noise_config, device)
        model = Hidden(hidden_config, device, noiser, tb_logger=None)
        utils.model_from_checkpoint(model, checkpoint)

        print('Model loaded successfully. Starting validation run...')
        _, val_data = utils.get_data_loaders(hidden_config, train_options)
        file_count = len(val_data.dataset)
        if file_count % train_options.batch_size == 0:
            steps_in_epoch = file_count // train_options.batch_size
        else:
            steps_in_epoch = file_count // train_options.batch_size + 1

        losses_accu = {}
        step = 0
        for image, _ in val_data:
            step += 1
            image = image.to(device)
            message = torch.Tensor(
                np.random.choice(
                    [0, 1],
                    (image.shape[0], hidden_config.message_length))).to(device)
            losses, (encoded_images, noised_images,
                     decoded_messages) = model.validate_on_batch(
                         [image, message])
            if not losses_accu:  # dict is empty, initialize
                for name in losses:
                    losses_accu[name] = []
            for name, loss in losses.items():
                losses_accu[name].append(loss)
            if step % print_each == 0:
                print(f'Step {step}/{steps_in_epoch}')
                utils.print_progress(losses_accu)
                print('-' * 40)

        utils.print_progress(losses_accu)
        write_validation_loss(os.path.join(args.runs_root,
                                           'validation_run.csv'),
                              losses_accu,
                              run_name,
                              checkpoint['epoch'],
                              write_header=write_csv_header)
        write_csv_header = False
예제 #14
0
파일: main.py 프로젝트: Dinamite1990/HiDDeN
def main():
    device = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')

    parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    parser.add_argument('--data-dir',
                        '-d',
                        required=True,
                        type=str,
                        help='The directory where the data is stored.')
    parser.add_argument('--batch-size',
                        '-b',
                        required=True,
                        type=int,
                        help='The batch size.')
    parser.add_argument('--epochs',
                        '-e',
                        default=400,
                        type=int,
                        help='Number of epochs to run the simulation.')
    parser.add_argument('--name',
                        required=True,
                        type=str,
                        help='The name of the experiment.')

    parser.add_argument(
        '--runs-folder',
        '-sf',
        default=os.path.join('.', 'runs'),
        type=str,
        help='The root folder where data about experiments are stored.')
    parser.add_argument(
        '--size',
        '-s',
        default=128,
        type=int,
        help=
        'The size of the images (images are square so this is height and width).'
    )
    parser.add_argument('--message',
                        '-m',
                        default=30,
                        type=int,
                        help='The length in bits of the watermark.')
    parser.add_argument(
        '--continue-from-folder',
        '-c',
        default='',
        type=str,
        help=
        'The folder from where to continue a previous run. Leave blank if you are starting a new experiment.'
    )
    parser.add_argument(
        '--tensorboard',
        dest='tensorboard',
        action='store_true',
        help='If specified, use adds a Tensorboard log. On by default')
    parser.add_argument('--no-tensorboard',
                        dest='tensorboard',
                        action='store_false',
                        help='Use to switch off Tensorboard logging.')

    parser.add_argument(
        '--noise',
        nargs='*',
        action=NoiseArgParser,
        help=
        "Noise layers configuration. Use quotes when specifying configuration, e.g. 'cropout((0.55, 0.6), (0.55, 0.6))'"
    )

    parser.set_defaults(tensorboard=True)
    args = parser.parse_args()

    checkpoint = None
    if args.continue_from_folder != '':
        this_run_folder = args.continue_from_folder
        options_file = os.path.join(this_run_folder,
                                    'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(
            options_file)
        checkpoint = utils.load_last_checkpoint(
            os.path.join(this_run_folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch'] + 1
    else:
        start_epoch = 1
        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs,
            train_folder=os.path.join(args.data_dir, 'train'),
            validation_folder=os.path.join(args.data_dir, 'val'),
            runs_folder=os.path.join('.', 'runs'),
            start_epoch=start_epoch,
            experiment_name=args.name)

        noise_config = args.noise if args.noise is not None else []
        hidden_config = HiDDenConfiguration(H=args.size,
                                            W=args.size,
                                            message_length=args.message,
                                            encoder_blocks=4,
                                            encoder_channels=64,
                                            decoder_blocks=7,
                                            decoder_channels=64,
                                            use_discriminator=True,
                                            use_vgg=False,
                                            discriminator_blocks=3,
                                            discriminator_channels=64,
                                            decoder_loss=1,
                                            encoder_loss=0.7,
                                            adversarial_loss=1e-3)

        this_run_folder = utils.create_folder_for_run(
            train_options.runs_folder, args.name)
        with open(os.path.join(this_run_folder, 'options-and-config.pickle'),
                  'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)

    logging.basicConfig(level=logging.INFO,
                        format='%(message)s',
                        handlers=[
                            logging.FileHandler(
                                os.path.join(this_run_folder,
                                             f'{args.name}.log')),
                            logging.StreamHandler(sys.stdout)
                        ])
    noiser = Noiser(noise_config, device)

    if args.tensorboard:
        logging.info('Tensorboard is enabled. Creating logger.')
        from tensorboard_logger import TensorBoardLogger
        tb_logger = TensorBoardLogger(os.path.join(this_run_folder, 'tb-logs'))
    else:
        tb_logger = None

    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.continue_from_folder != '':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        utils.model_from_checkpoint(model, checkpoint)

    logging.info('HiDDeN model: {}\n'.format(model.to_stirng()))
    logging.info('Model Configuration:\n')
    logging.info(pprint.pformat(vars(hidden_config)))
    logging.info('\nNoise configuration:\n')
    logging.info(pprint.pformat(str(noise_config)))
    logging.info('\nTraining train_options:\n')
    logging.info(pprint.pformat(vars(train_options)))

    train(model, device, hidden_config, train_options, this_run_folder,
          tb_logger)
예제 #15
0
파일: main.py 프로젝트: chenhsiu48/HiDDeN
def main():
    device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

    parent_parser = argparse.ArgumentParser(description='Training of HiDDeN nets')
    subparsers = parent_parser.add_subparsers(dest='command', help='Sub-parser for commands')
    new_run_parser = subparsers.add_parser('new', help='starts a new run')
    new_run_parser.add_argument('--data-dir', '-d', required=True, type=str,
                                help='The directory where the data is stored.')
    new_run_parser.add_argument('--batch-size', '-b', default=30, type=int, help='The batch size.')
    new_run_parser.add_argument('--epochs', '-e', default=300, type=int, help='Number of epochs to run the simulation.')
    new_run_parser.add_argument('--name', required=True, type=str, help='The name of the experiment.')

    new_run_parser.add_argument('--size', '-s', default=128, type=int, help='The size of the images (images are square so this is height and width).')
    new_run_parser.add_argument('--in_channels', default=3, type=int, help='input channel size')
    new_run_parser.add_argument('--message', '-m', default=32, type=int, help='The length in bits of the watermark.')
    new_run_parser.add_argument('--ratio', default=0.2, type=float, help='ratio of dataset.')
    new_run_parser.add_argument('--continue-from-folder', '-c', default='', type=str,
                                help='The folder from where to continue a previous run. Leave blank if you are starting a new experiment.')
    new_run_parser.add_argument('--enable-fp16', dest='enable_fp16', action='store_true',
                                help='Enable mixed-precision training.')

    new_run_parser.add_argument('--noise', nargs='*', action=NoiseArgParser,
                                help="Noise layers configuration. Use quotes when specifying configuration, e.g. 'cropout((0.55, 0.6), (0.55, 0.6))'")

    new_run_parser.set_defaults(enable_fp16=False)

    continue_parser = subparsers.add_parser('continue', help='Continue a previous run')
    continue_parser.add_argument('--folder', '-f', required=True, type=str,
                                 help='Continue from the last checkpoint in this folder.')
    continue_parser.add_argument('--data-dir', '-d', required=False, type=str,
                                 help='The directory where the data is stored. Specify a value only if you want to override the previous value.')
    continue_parser.add_argument('--epochs', '-e', required=False, type=int,
                                help='Number of epochs to run the simulation. Specify a value only if you want to override the previous value.')

    args = parent_parser.parse_args()
    checkpoint = None
    loaded_checkpoint_file_name = None

    if args.command == 'continue':
        options_file = os.path.join(args.folder, 'options-and-config.pickle')
        train_options, hidden_config, noise_config = utils.load_options(options_file)
        checkpoint, loaded_checkpoint_file_name = utils.load_last_checkpoint(os.path.join(args.folder, 'checkpoints'))
        train_options.start_epoch = checkpoint['epoch'] + 1
        train_options.best_epoch = checkpoint['best_epoch']
        train_options.best_cond = checkpoint['best_cond']
        if args.epochs is not None:
            if train_options.start_epoch < args.epochs:
                train_options.number_of_epochs = args.epochs
            else:
                print(f'Command-line specifies of number of epochs = {args.epochs}, but folder={args.folder} '
                      f'already contains checkpoint for epoch = {train_options.start_epoch}.')
                exit(1)

    else:
        assert args.command == 'new'
        start_epoch = 1
        train_options = TrainingOptions(
            batch_size=args.batch_size,
            number_of_epochs=args.epochs, data_ratio=args.ratio,
            data_dir=args.data_dir,
            runs_folder='./runs', tb_logger_folder='./logger',
            start_epoch=start_epoch, experiment_name=f'{args.name}_r{int(100*args.ratio):03d}b{args.size}ch{args.in_channels}m{args.message}')

        noise_config = args.noise if args.noise is not None else []
        hidden_config = HiDDenConfiguration(H=args.size, W=args.size,input_channels=args.in_channels,
                                            message_length=args.message,
                                            encoder_blocks=4, encoder_channels=64,
                                            decoder_blocks=7, decoder_channels=64,
                                            use_discriminator=True,
                                            use_vgg=False,
                                            discriminator_blocks=3, discriminator_channels=64,
                                            decoder_loss=1,
                                            encoder_loss=0.7,
                                            adversarial_loss=1e-3,
                                            enable_fp16=args.enable_fp16
                                            )

        utils.create_folder_for_run(train_options)
        with open(train_options.options_file, 'wb+') as f:
            pickle.dump(train_options, f)
            pickle.dump(noise_config, f)
            pickle.dump(hidden_config, f)


    logging.basicConfig(level=logging.INFO,
                        format='%(message)s',
                        handlers=[
                            logging.FileHandler(os.path.join(train_options.this_run_folder, f'{train_options.experiment_name}.log')),
                            logging.StreamHandler(sys.stdout)
                        ])
    logging.info(f'Tensorboard is enabled. Creating logger at {train_options.tb_logger_dir}')
    tb_logger = TensorBoardLogger(train_options.tb_logger_dir)

    noiser = Noiser(noise_config, device)
    model = Hidden(hidden_config, device, noiser, tb_logger)

    if args.command == 'continue':
        # if we are continuing, we have to load the model params
        assert checkpoint is not None
        logging.info(f'Loading checkpoint from file {loaded_checkpoint_file_name}')
        utils.model_from_checkpoint(model, checkpoint)

    logging.info('HiDDeN model: {}\n'.format(model.to_stirng()))
    logging.info('Model Configuration:\n')
    logging.info(pprint.pformat(vars(hidden_config)))
    logging.info('\nNoise configuration:\n')
    logging.info(pprint.pformat(str(noise_config)))
    logging.info('\nTraining train_options:\n')
    logging.info(pprint.pformat(vars(train_options)))

    train(model, device, hidden_config, train_options, train_options.this_run_folder, tb_logger)