def __init__(self, config): super(Trainer, self).__init__() self.config = config self.use_cuda = self.config['cuda'] self.device_ids = self.config['gpu_ids'] self.netG = Generator(self.config['netG'], self.use_cuda, self.device_ids) self.localD = LocalDis(self.config['netD'], self.use_cuda, self.device_ids) self.globalD = GlobalDis(self.config['netD'], self.use_cuda, self.device_ids) self.optimizer_g = torch.optim.Adam(self.netG.parameters(), lr=self.config['lr'], betas=(self.config['beta1'], self.config['beta2'])) d_params = list(self.localD.parameters()) + list( self.globalD.parameters()) self.optimizer_d = torch.optim.Adam(d_params, lr=config['lr'], betas=(self.config['beta1'], self.config['beta2'])) if self.use_cuda: self.netG.to(self.device_ids[0]) self.localD.to(self.device_ids[0]) self.globalD.to(self.device_ids[0])
class Trainer(nn.Module): def __init__(self, config): super(Trainer, self).__init__() self.config = config self.use_cuda = self.config['cuda'] self.device_ids = self.config['gpu_ids'] self.netG = Generator(self.config['netG'], self.use_cuda, self.device_ids) self.localD = LocalDis(self.config['netD'], self.use_cuda, self.device_ids) self.globalD = GlobalDis(self.config['netD'], self.use_cuda, self.device_ids) self.optimizer_g = torch.optim.Adam(self.netG.parameters(), lr=self.config['lr'], betas=(self.config['beta1'], self.config['beta2'])) d_params = list(self.localD.parameters()) + list( self.globalD.parameters()) self.optimizer_d = torch.optim.Adam(d_params, lr=config['lr'], betas=(self.config['beta1'], self.config['beta2'])) if self.use_cuda: self.netG.to(self.device_ids[0]) self.localD.to(self.device_ids[0]) self.globalD.to(self.device_ids[0]) def forward(self, x, bboxes, masks, ground_truth, compute_loss_g=False): self.train() l1_loss = nn.L1Loss() losses = {} x1, x2, offset_flow = self.netG(x, masks) local_patch_gt = local_patch(ground_truth, bboxes) x1_inpaint = x1 * masks + x * (1. - masks) x2_inpaint = x2 * masks + x * (1. - masks) local_patch_x1_inpaint = local_patch(x1_inpaint, bboxes) local_patch_x2_inpaint = local_patch(x2_inpaint, bboxes) # D part # wgan d loss local_patch_real_pred, local_patch_fake_pred = self.dis_forward( self.localD, local_patch_gt, local_patch_x2_inpaint.detach()) global_real_pred, global_fake_pred = self.dis_forward( self.globalD, ground_truth, x2_inpaint.detach()) losses['wgan_d'] = torch.mean(local_patch_fake_pred - local_patch_real_pred) + \ torch.mean(global_fake_pred - global_real_pred) * self.config['global_wgan_loss_alpha'] # gradients penalty loss local_penalty = self.calc_gradient_penalty( self.localD, local_patch_gt, local_patch_x2_inpaint.detach()) global_penalty = self.calc_gradient_penalty(self.globalD, ground_truth, x2_inpaint.detach()) losses['wgan_gp'] = local_penalty + global_penalty # G part if compute_loss_g: sd_mask = spatial_discounting_mask(self.config) losses['l1'] = l1_loss(local_patch_x1_inpaint * sd_mask, local_patch_gt * sd_mask) * \ self.config['coarse_l1_alpha'] + \ l1_loss(local_patch_x2_inpaint * sd_mask, local_patch_gt * sd_mask) losses['ae'] = l1_loss(x1 * (1. - masks), ground_truth * (1. - masks)) * \ self.config['coarse_l1_alpha'] + \ l1_loss(x2 * (1. - masks), ground_truth * (1. - masks)) # wgan g loss local_patch_real_pred, local_patch_fake_pred = self.dis_forward( self.localD, local_patch_gt, local_patch_x2_inpaint) global_real_pred, global_fake_pred = self.dis_forward( self.globalD, ground_truth, x2_inpaint) losses['wgan_g'] = - torch.mean(local_patch_fake_pred) - \ torch.mean(global_fake_pred) * self.config['global_wgan_loss_alpha'] return losses, x2_inpaint, offset_flow def dis_forward(self, netD, ground_truth, x_inpaint): assert ground_truth.size() == x_inpaint.size() batch_size = ground_truth.size(0) batch_data = torch.cat([ground_truth, x_inpaint], dim=0) batch_output = netD(batch_data) real_pred, fake_pred = torch.split(batch_output, batch_size, dim=0) return real_pred, fake_pred # Calculate gradient penalty def calc_gradient_penalty(self, netD, real_data, fake_data): batch_size = real_data.size(0) alpha = torch.rand(batch_size, 1, 1, 1) alpha = alpha.expand_as(real_data) if self.use_cuda: alpha = alpha.cuda() interpolates = alpha * real_data + (1 - alpha) * fake_data interpolates = interpolates.requires_grad_().clone() disc_interpolates = netD(interpolates) grad_outputs = torch.ones(disc_interpolates.size()) if self.use_cuda: grad_outputs = grad_outputs.cuda() gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=grad_outputs, create_graph=True, retain_graph=True, only_inputs=True)[0] gradients = gradients.view(batch_size, -1) gradient_penalty = ((gradients.norm(2, dim=1) - 1)**2).mean() return gradient_penalty def inference(self, x, masks): self.eval() x1, x2, offset_flow = self.netG(x, masks) # x1_inpaint = x1 * masks + x * (1. - masks) x2_inpaint = x2 * masks + x * (1. - masks) return x2_inpaint, offset_flow def save_model(self, checkpoint_dir, iteration): # Save generators, discriminators, and optimizers gen_name = os.path.join(checkpoint_dir, 'gen_%08d.pt' % iteration) dis_name = os.path.join(checkpoint_dir, 'dis_%08d.pt' % iteration) opt_name = os.path.join(checkpoint_dir, 'optimizer.pt') torch.save(self.netG.state_dict(), gen_name) torch.save( { 'localD': self.localD.state_dict(), 'globalD': self.globalD.state_dict() }, dis_name) torch.save( { 'gen': self.optimizer_g.state_dict(), 'dis': self.optimizer_d.state_dict() }, opt_name) def resume(self, checkpoint_dir, iteration=0, test=False): # Load generators last_model_name = get_model_list(checkpoint_dir, "gen", iteration=iteration) self.netG.load_state_dict(torch.load(last_model_name)) iteration = int(last_model_name[-11:-3]) if not test: # Load discriminators last_model_name = get_model_list(checkpoint_dir, "dis", iteration=iteration) state_dict = torch.load(last_model_name) self.localD.load_state_dict(state_dict['localD']) self.globalD.load_state_dict(state_dict['globalD']) # Load optimizers state_dict = torch.load( os.path.join(checkpoint_dir, 'optimizer.pt')) self.optimizer_d.load_state_dict(state_dict['dis']) self.optimizer_g.load_state_dict(state_dict['gen']) print("Resume from {} at iteration {}".format(checkpoint_dir, iteration)) logger.info("Resume from {} at iteration {}".format( checkpoint_dir, iteration)) return iteration
def train_distributed(config, logger, writer, checkpoint_path): dist.init_process_group( backend='nccl', # backend='gloo', init_method='env://' ) # Find out what GPU on this compute node. # local_rank = torch.distributed.get_rank() # this is the total # of GPUs across all nodes # if using 2 nodes with 4 GPUs each, world size is 8 # world_size = torch.distributed.get_world_size() print("### global rank of curr node: {} of {}".format(local_rank, world_size)) # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. # print("local_rank: ", local_rank) # dist.barrier() torch.cuda.set_device(local_rank) # Define the trainer print("Creating models on device: ", local_rank) input_dim = config['netG']['input_dim'] cnum = config['netG']['ngf'] use_cuda = True gated = config['netG']['gated'] # Models # netG = Generator(config['netG'], use_cuda=True, device=local_rank).cuda() netG = torch.nn.parallel.DistributedDataParallel( netG, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True ) localD = LocalDis(config['netD'], use_cuda=True, device_id=local_rank).cuda() localD = torch.nn.parallel.DistributedDataParallel( localD, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True ) globalD = GlobalDis(config['netD'], use_cuda=True, device_id=local_rank).cuda() globalD = torch.nn.parallel.DistributedDataParallel( globalD, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True ) if local_rank == 0: logger.info("\n{}".format(netG)) logger.info("\n{}".format(localD)) logger.info("\n{}".format(globalD)) # Optimizers # optimizer_g = torch.optim.Adam( netG.parameters(), lr=config['lr'], betas=(config['beta1'], config['beta2']) ) d_params = list(localD.parameters()) + list(globalD.parameters()) optimizer_d = torch.optim.Adam( d_params, lr=config['lr'], betas=(config['beta1'], config['beta2']) ) # Data # sampler = None train_dataset = Dataset( data_path=config['train_data_path'], with_subfolder=config['data_with_subfolder'], image_shape=config['image_shape'], random_crop=config['random_crop'] ) sampler = torch.utils.data.distributed.DistributedSampler( train_dataset, # num_replicas=torch.cuda.device_count(), num_replicas=len(config['gpu_ids']), # rank = local_rank ) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=config['batch_size'], shuffle=(sampler is None), num_workers=config['num_workers'], pin_memory=True, sampler=sampler, drop_last=True ) # Get the resume iteration to restart training # # start_iteration = trainer.resume(config['resume']) if config['resume'] else 1 start_iteration = 1 print("\n\nStarting epoch: ", start_iteration) iterable_train_loader = iter(train_loader) if local_rank == 0: time_count = time.time() epochs = config['niter'] + 1 pbar = tqdm(range(start_iteration, epochs), dynamic_ncols=True, smoothing=0.01) for iteration in pbar: sampler.set_epoch(iteration) try: ground_truth = next(iterable_train_loader) except StopIteration: iterable_train_loader = iter(train_loader) ground_truth = next(iterable_train_loader) # Prepare the inputs bboxes = random_bbox(config, batch_size=ground_truth.size(0)) x, mask = mask_image(ground_truth, bboxes, config) # Move to proper device. # bboxes = bboxes.cuda(local_rank) x = x.cuda(local_rank) mask = mask.cuda(local_rank) ground_truth = ground_truth.cuda(local_rank) ###### Forward pass ###### compute_g_loss = iteration % config['n_critic'] == 0 # losses, inpainted_result, offset_flow = forward(config, x, bboxes, mask, ground_truth, # localD=localD, globalD=globalD, # coarse_gen=coarse_generator, fine_gen=fine_generator, # local_rank=local_rank, compute_loss_g=compute_g_loss) losses, inpainted_result, offset_flow = forward(config, x, bboxes, mask, ground_truth, netG=netG, localD=localD, globalD=globalD, local_rank=local_rank, compute_loss_g=compute_g_loss) # Scalars from different devices are gathered into vectors # for k in losses.keys(): if not losses[k].dim() == 0: losses[k] = torch.mean(losses[k]) ###### Backward pass ###### # Update D if not compute_g_loss: optimizer_d.zero_grad() losses['d'] = losses['wgan_d'] + losses['wgan_gp'] * config['wgan_gp_lambda'] losses['d'].backward() optimizer_d.step() # Update G if compute_g_loss: optimizer_g.zero_grad() losses['g'] = losses['ae'] * config['ae_loss_alpha'] losses['g'] += losses['l1'] * config['l1_loss_alpha'] losses['g'] += losses['wgan_g'] * config['gan_loss_alpha'] losses['g'].backward() optimizer_g.step() # Set tqdm description # if local_rank == 0: log_losses = ['l1', 'ae', 'wgan_g', 'wgan_d', 'wgan_gp', 'g', 'd'] message = ' ' for k in log_losses: v = losses.get(k, 0.) writer.add_scalar(k, v, iteration) message += '%s: %.4f ' % (k, v) pbar.set_description( ( f" {message}" ) ) if local_rank == 0: if iteration % (config['viz_iter']) == 0: viz_max_out = config['viz_max_out'] if x.size(0) > viz_max_out: viz_images = torch.stack([x[:viz_max_out], inpainted_result[:viz_max_out], offset_flow[:viz_max_out]], dim=1) else: viz_images = torch.stack([x, inpainted_result, offset_flow], dim=1) viz_images = viz_images.view(-1, *list(x.size())[1:]) vutils.save_image(viz_images, '%s/niter_%08d.png' % (checkpoint_path, iteration), nrow=3 * 4, normalize=True) # Save the model if iteration % config['snapshot_save_iter'] == 0: save_model( netG, globalD, localD, optimizer_g, optimizer_d, checkpoint_path, iteration )