def validation(self, img_query, img_database, R=100): print("%s #validation# start validation" % (datetime.now())) query_batch = int(ceil(img_query.n_samples / float(self.val_batch_size))) img_query.finish_epoch() print("%s #validation# totally %d query in %d batches" % (datetime.now(), img_query.n_samples, query_batch)) for i in range(query_batch): images, labels = img_query.next_batch(self.val_batch_size) output, loss = self.sess.run([self.img_last_layer, self.cos_loss], feed_dict={self.img: images, self.img_label: labels, self.stage: 1}) img_query.feed_batch_output(self.val_batch_size, output) print('Cosine Loss: %s'%loss) database_batch = int(ceil(img_database.n_samples / float(self.val_batch_size))) img_database.finish_epoch() print("%s #validation# totally %d database in %d batches" % (datetime.now(), img_database.n_samples, database_batch)) for i in range(database_batch): images, labels = img_database.next_batch(self.val_batch_size) output, loss = self.sess.run([self.img_last_layer, self.cos_loss], feed_dict={self.img: images, self.img_label: labels, self.stage: 1}) img_database.feed_batch_output(self.val_batch_size, output) if i % 100 == 0: print('Cosine Loss[%d/%d]: %s'%(i, database_batch, loss)) mAPs = MAPs(R) self.sess.close() prec, rec, mmap = mAPs.get_precision_recall_by_Hamming_Radius_All(img_database, img_query) for i in range(self.output_dim+1): #prec, rec, mmap = mAPs.get_precision_recall_by_Hamming_Radius(img_database, img_query, i) plot.plot('prec', prec[i]) plot.plot('rec', rec[i]) plot.plot('mAP', mmap[i]) plot.tick() print('Results ham dist [%d], prec:%s, rec:%s, mAP:%s'%(i, prec[i], rec[i], mmap[i])) result_save_dir = os.path.join(self.save_dir, self.file_name) if os.path.exists(result_save_dir) is False: os.makedirs(result_save_dir) plot.flush(result_save_dir) prec, rec, mmap = mAPs.get_precision_recall_by_Hamming_Radius(img_database, img_query, 2) return { 'i2i_by_feature': mAPs.get_mAPs_by_feature(img_database, img_query), 'i2i_after_sign': mAPs.get_mAPs_after_sign(img_database, img_query), 'i2i_prec_radius_2': prec, 'i2i_recall_radius_2': rec, 'i2i_map_radius_2': mmap, }
# Plots overshoot parameters for a single model (one snapshot in time). # # Run this from your console to show help: # # python3 plot_model.py -h # # Source: https://github.com/evgenyneu/OvershootPlot # from model.parse_arguments import parse_arguments from model.parse_data import find_single_model from model.plot import plot import matplotlib.pyplot as plt from shared.plot import show_plot, add_subplot arguments = parse_arguments() model = find_single_model(filename=arguments.file, model_number=arguments.model_number, zone_number=arguments.zone_number, overshoot_direction=arguments.overshoot_direction) if not model: exit(f"Could not find model.") plot(arguments, model, add_subplot(plt)) show_plot(plt, arguments)
def redraw(self, data): if self.plot != None: self.delaxes(self.plot) self.plot = self.add_subplot(111) plot(arguments, data, self.plot)