Path("results/").mkdir(parents=True, exist_ok=True) # Initialize Model tgn = TGN( neighbor_finder=train_ngh_finder, node_features=node_features, edge_features=edge_features, device=device, n_layers=NUM_LAYER, n_heads=NUM_HEADS, dropout=DROP_OUT, use_memory=USE_MEMORY, message_dimension=MESSAGE_DIM, memory_dimension=MEMORY_DIM, memory_update_at_start=not args.memory_update_at_end, embedding_module_type=args.embedding_module, message_function=args.message_function, aggregator_type=args.aggregator, memory_updater_type=args.memory_updater, n_neighbors=NUM_NEIGHBORS, mean_time_shift_src=mean_time_shift_src, std_time_shift_src=std_time_shift_src, mean_time_shift_dst=mean_time_shift_dst, std_time_shift_dst=std_time_shift_dst, use_destination_embedding_in_message=args. use_destination_embedding_in_message, use_source_embedding_in_message=args.use_source_embedding_in_message, dyrep=args.dyrep) # loss function criterion = torch.nn.BCELoss()
args.prefix) Path("results/").mkdir(parents=True, exist_ok=True) # Initialize Model tgn = TGN( neighbor_finder=train_ngh_finder, node_features=node_features, edge_features=edge_features, device=device, n_layers=NUM_LAYER, n_heads=NUM_HEADS, dropout=DROP_OUT, use_memory=USE_MEMORY, message_dimension=MESSAGE_DIM, memory_dimension=MEMORY_DIM, memory_update_at_start=not args.memory_update_at_end, embedding_module_type=args.embedding_module, message_function=args.message_function, aggregator_type=args.aggregator, n_neighbors=NUM_NEIGHBORS, mean_time_shift_src=mean_time_shift_src, std_time_shift_src=std_time_shift_src, mean_time_shift_dst=mean_time_shift_dst, std_time_shift_dst=std_time_shift_dst, use_destination_embedding_in_message=args. use_destination_embedding_in_message, use_source_embedding_in_message=args.use_source_embedding_in_message) tgn = tgn.to(device) num_instance = len(train_data.sources)