예제 #1
0
 def __init__(self, args):
     self.cuda = 'True'
     self.model_name = 'bert'
     self.train_path = args.train_path
     self.dev_path = args.dev_path
     self.test_path = args.test_path
     self.save_path = args.save_path
     self.use_cuda = args.use_cuda
     self.num_class = args.num_class
     self.num_epoch = args.num_epoch
     self.batch_size = args.batch_size
     self.pad_size = args.pad_size
     self.learning_rate = args.lr
     self.bert_pretrain_model = args.pretrain_model_path
     self.tokenizer = BertTokenizer.from_pretrained(
         self.bert_pretrain_model + "/bert-base-chinese-vocab.txt")
     self.hidden_size = 768
     self.log_path = 'logs/' + self.model_name
예제 #2
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument("--do_data", default=True, action='store_true')
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument('--max_ngram', default=3, type=int)
    parser.add_argument("--do_lower_case", default=False, action='store_true')
    parser.add_argument('--seed', default=42, type=int)
    # parser.add_argument("--file_num", type=int, default=10,                        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument(
        "--short_seq_prob",
        type=float,
        default=0.1,
        help="Probability of making a short sentence as a training example")
    parser.add_argument(
        "--masked_lm_prob",
        type=float,
        default=0.15,
        help="Probability of masking each token for the LM task")
    # 128 * 0.15
    parser.add_argument(
        "--max_predictions_per_seq",
        type=int,
        default=20,
        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)
    from configs.base import config
    args.vocab_path = config['albert_vocab_path']
    args.data_dir = config['data_dir']
    logger.info("pregenerate training data parameters:\n %s", args)
    tokenizer = BertTokenizer(vocab_file=args.vocab_path,
                              do_lower_case=args.do_lower_case)

    small_path = config['data_dir'] / "corpus/small"
    files = sorted(
        [f for f in small_path.iterdir() if f.exists() and '.txt' in str(f)])

    file_path = files[0].absolute()
    max_seq_len = args.max_seq_len
    train(file_path, tokenizer, max_seq_len)
    print("  dataloader ok! ")
    sys.exit(0)
예제 #3
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default="dataset",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--config_path",
                        default="prev_trained_model/electra_small/config.json",
                        type=str)
    parser.add_argument("--vocab_path",
                        default="prev_trained_model/electra_small/vocab.txt",
                        type=str)
    parser.add_argument(
        "--output_dir",
        default="outputs",
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--model_path",
                        default='prev_trained_model/electra_small',
                        type=str)
    parser.add_argument('--data_name', default='electra', type=str)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="Number of epochs to train for")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument('--num_eval_steps', default=100)
    parser.add_argument('--num_save_steps', default=2000)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=128,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--gen_weight",
                        default=1.0,
                        type=float,
                        help='masked language modeling / generator loss')
    parser.add_argument("--disc_weight",
                        default=50,
                        type=float,
                        help='discriminator loss')
    parser.add_argument('--untied_generator',
                        action='store_true',
                        help='tie all generator/discriminator weights?')
    parser.add_argument('--temperature',
                        default=0,
                        type=float,
                        help='temperature for sampling from generator')
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument('--max_grad_norm', default=1.0, type=float)
    parser.add_argument("--learning_rate",
                        default=0.000176,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O2',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--continue_train',
                        default='',
                        help="continue train path")
    args = parser.parse_args()

    args.data_dir = Path(args.data_dir)
    args.output_dir = Path(args.output_dir)

    pregenerated_data = args.data_dir / "corpus/train"
    init_logger(log_file=str(args.output_dir / "train_albert_model.log"))
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
        metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(f"cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}"
    )

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    seed_everything(args.seed)
    tokenizer = BertTokenizer.from_pretrained(args.vocab_path,
                                              do_lower_case=args.do_lower_case)
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = ElectraConfig.from_pretrained(args.config_path,
                                                gen_weight=args.gen_weight,
                                                temperature=args.temperature,
                                                disc_weight=args.disc_weight)
    model = ElectraForPreTraining(config=bert_config)

    if args.continue_train:
        print(f"Continue train from {args.continue_train}")
        model = model.from_pretrained(args.continue_train)
    elif args.model_path:
        print("载入预训练模型")
        model.generator = AutoModel.from_pretrained(args.model_path + "/G")
        model.electra = AutoModel.from_pretrained(args.model_path + "/D")

    # print(model)
    model.to(device)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(params=optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=num_train_optimization_steps)
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    # if args.model_path:
    #     optimizer.load_state_dict(torch.load(args.model_path + "/optimizer.bin"))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    if args.n_gpu > 1:
        # model = BalancedDataParallel(gpu0_bsz=32,dim=0,model).to(device)
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    global_step = 0
    g_metric = LMAccuracy()
    d_metric = AccuracyThresh()
    tr_g_acc = AverageMeter()
    tr_d_acc = AverageMeter()
    tr_loss = AverageMeter()
    tr_g_loss = AverageMeter()
    tr_d_loss = AverageMeter()

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}")
    logger.info(f"  Num steps = {num_train_optimization_steps}")
    logger.info(f"  warmup_steps = {args.warmup_steps}")
    logger.info(f"  Num workable gpus = {args.n_gpu}")

    start_time = time.time()
    seed_everything(args.seed)  # Added here for reproducibility
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(
                file_id=idx,
                training_path=pregenerated_data,
                tokenizer=tokenizer,
                reduce_memory=args.reduce_memory,
                data_name=args.data_name)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset,
                                          sampler=train_sampler,
                                          batch_size=args.train_batch_size)
            model.train()
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids = batch
                outputs = model(input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask,
                                masked_lm_labels=lm_label_ids)
                loss, g_loss, d_loss, d_logits, g_logits, is_replaced_label = outputs

                active_indices = input_mask.view(-1) == 1
                active_logits = d_logits.view(-1)[active_indices]
                active_labels = is_replaced_label.view(-1)[active_indices]

                g_metric(logits=g_logits.view(-1, bert_config.vocab_size),
                         target=lm_label_ids.view(-1))
                d_metric(logits=active_logits.view(-1, 1),
                         target=active_labels)

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                    g_loss = g_loss.mean()
                    d_loss = d_loss.mean()

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_g_acc.update(g_metric.value(), n=input_ids.size(0))
                tr_d_acc.update(d_metric.value(), n=input_ids.size(0))

                tr_loss.update(loss.item(), n=1)
                tr_g_loss.update(g_loss.item(), n=1)
                tr_d_loss.update(d_loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    now = time.time()
                    eta = now - start_time
                    if eta > 3600:
                        eta_format = ('%d:%02d:%02d' %
                                      (eta // 3600,
                                       (eta % 3600) // 60, eta % 60))
                    elif eta > 60:
                        eta_format = '%d:%02d' % (eta // 60, eta % 60)
                    else:
                        eta_format = '%ds' % eta
                    train_logs['loss'] = tr_loss.avg
                    train_logs['g_acc'] = tr_g_acc.avg
                    train_logs['d_acc'] = tr_d_acc.avg
                    train_logs['g_loss'] = tr_g_loss.avg
                    train_logs['d_loss'] = tr_d_loss.avg
                    show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
                                f'- ETA: {eta_format}' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_g_acc.reset()
                    tr_d_acc.reset()
                    tr_loss.reset()
                    tr_g_loss.reset()
                    tr_d_loss.reset()
                    start_time = now

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = args.output_dir / f'lm-checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(
                            model, 'module'
                        ) else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

                        model.module.generator.save_pretrained(
                            str(output_dir / "G"))
                        logger.info("Saving generator model checkpoint to %s",
                                    output_dir / "G")
                        model.module.electra.save_pretrained(
                            str(output_dir / "D"))
                        logger.info("Saving electra model checkpoint to %s",
                                    output_dir / "D")

                        torch.save(optimizer.state_dict(),
                                   str(output_dir / "optimizer.bin"))

                        # save config
                        output_config_file = output_dir / CONFIG_NAME
                        output_config_file_D = output_dir / "D" / CONFIG_NAME
                        output_config_file_G = output_dir / "G" / CONFIG_NAME

                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())
                        with open(str(output_config_file_D), 'w') as f:
                            f.write(
                                model.module.electra.config.to_json_string())
                        with open(str(output_config_file_G), 'w') as f:
                            f.write(
                                model.module.generator.config.to_json_string())
                        # save vocab
                        tokenizer.save_vocabulary(output_dir)
예제 #4
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True)
    parser.add_argument("--vocab_path", default=None, type=str, required=True)
    parser.add_argument("--output_dir", default=None, type=str, required=True)

    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument('--max_ngram', default=3, type=int)
    parser.add_argument("--do_data", default=False, action='store_true')
    parser.add_argument("--do_split", default=False, action='store_true')
    parser.add_argument("--do_lower_case", default=False, action='store_true')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument("--line_per_file", default=1000000000, type=int)
    parser.add_argument("--file_num", type=int, default=10,
                        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument("--short_seq_prob", type=float, default=0.1,
                        help="Probability of making a short sentence as a training example")
    parser.add_argument("--masked_lm_prob", type=float, default=0.15,
                        help="Probability of masking each token for the LM task")
    parser.add_argument("--max_predictions_per_seq", type=int, default=20,  # 128 * 0.15
                        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)
    args.data_dir = Path(args.data_dir)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir +"pregenerate_training_data_ngram.log")
    logger.info("pregenerate training data parameters:\n %s", args)
    tokenizer = BertTokenizer(vocab_file=args.vocab_path, do_lower_case=args.do_lower_case)

    # split big file
    if args.do_split:
        corpus_path =args.data_dir / "corpus/corpus.txt"
        split_save_path = args.data_dir / "/corpus/train"
        if not split_save_path.exists():
            split_save_path.mkdir(exist_ok=True)
        line_per_file = args.line_per_file
        command = f'split -a 4 -l {line_per_file} -d {corpus_path} {split_save_path}/shard_'
        os.system(f"{command}")

    # generator train data
    if args.do_data:
        data_path = args.data_dir / "corpus/train"
        files = sorted([f for f in data_path.parent.iterdir() if f.exists() and '.txt' in str(f)])
        for idx in range(args.file_num):
            logger.info(f"pregenetate {args.data_name}_file_{idx}.json")
            save_filename = data_path / f"{args.data_name}_file_{idx}.json"
            num_instances = 0
            with save_filename.open('w') as fw:
                for file_idx in range(len(files)):
                    file_path = files[file_idx]
                    file_examples = create_training_instances(input_file=file_path,
                                                              tokenizer=tokenizer,
                                                              max_seq_len=args.max_seq_len,
                                                              max_ngram=args.max_ngram,
                                                              short_seq_prob=args.short_seq_prob,
                                                              masked_lm_prob=args.masked_lm_prob,
                                                              max_predictions_per_seq=args.max_predictions_per_seq)
                    file_examples = [json.dumps(instance) for instance in file_examples]
                    for instance in file_examples:
                        fw.write(instance + '\n')
                        num_instances += 1
            metrics_file = data_path / f"{args.data_name}_file_{idx}_metrics.json"
            print(f"num_instances: {num_instances}")
            with metrics_file.open('w') as metrics_file:
                metrics = {
                    "num_training_examples": num_instances,
                    "max_seq_len": args.max_seq_len
                }
                metrics_file.write(json.dumps(metrics))
예제 #5
0
from configs.base import config
from model.modeling_albert import BertConfig, BertModel
from model.tokenization_bert import BertTokenizer
from keras.preprocessing.sequence import pad_sequences
from torch.utils.data import TensorDataset, DataLoader, RandomSampler

import os

device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
MAX_LEN = 10
if __name__ == '__main__':
    bert_config = BertConfig.from_pretrained(str(config['albert_config_path']),
                                             share_type='all')
    base_path = os.getcwd()
    VOCAB = base_path + '/configs/vocab.txt'  # your path for model and vocab
    tokenizer = BertTokenizer.from_pretrained(VOCAB)

    # encoder text
    tag2idx = {
        '[SOS]': 101,
        '[EOS]': 102,
        '[PAD]': 0,
        'B_LOC': 1,
        'I_LOC': 2,
        'O': 3
    }
    sentences = ['我是中华人民共和国国民', '我爱祖国']
    tags = ['O O B_LOC I_LOC I_LOC I_LOC I_LOC I_LOC O O', 'O O O O']

    tokenized_text = [tokenizer.tokenize(sent) for sent in sentences]
    # 利用pad_sequence对序列长度进行截断和padding
class BertProcessor(object):
    """Base class for data converters for sequence classification data sets."""
    def __init__(self, vocab_path, do_lower_case):
        self.tokenizer = BertTokenizer(vocab_path, do_lower_case)

    def get_train(self, data_file):
        """Gets a collection of `InputExample`s for the train set."""
        return self.read_data(data_file)

    def get_dev(self, data_file):
        """Gets a collection of `InputExample`s for the dev set."""
        return self.read_data(data_file)

    def get_test(self, lines):
        return lines

    def get_labels(self):
        """Gets the list of labels for this data set."""
        return ["0", "1"]

    @classmethod
    def read_data(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r", encoding="utf-8-sig") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines

    def truncate_seq_pair(self, tokens_a, tokens_b, max_length):
        # This is a simple heuristic which will always truncate the longer sequence
        # one token at a time. This makes more sense than truncating an equal percent
        # of tokens from each, since if one sequence is very short then each token
        # that's truncated likely contains more information than a longer sequence.
        while True:
            total_length = len(tokens_a) + len(tokens_b)
            if total_length <= max_length:
                break
            if len(tokens_a) > len(tokens_b):
                tokens_a.pop()
            else:
                tokens_b.pop()

    def create_examples(self, lines, example_type, cached_examples_file):
        '''
        Creates examples for data
        '''
        pbar = ProgressBar(n_total=len(lines), desc='create examples')
        if cached_examples_file.exists():
            logger.info("Loading examples from cached file %s",
                        cached_examples_file)
            examples = torch.load(cached_examples_file)
        else:
            examples = []
            for i, line in enumerate(lines):
                guid = '%s-%d' % (example_type, i)
                text_a = line[0]
                text_b = line[1]
                label = line[2]
                label = int(label)
                example = InputExample(guid=guid,
                                       text_a=text_a,
                                       text_b=text_b,
                                       label=label)
                examples.append(example)
                pbar(step=i)
            logger.info("Saving examples into cached file %s",
                        cached_examples_file)
            torch.save(examples, cached_examples_file)
        return examples

    def create_features(self, examples, max_seq_len, cached_features_file):
        '''
        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids:   0   0  0    0    0     0       0   0   1  1  1  1   1   1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids:   0   0   0   0  0     0   0
        '''
        pbar = ProgressBar(n_total=len(examples), desc='create features')
        if cached_features_file.exists():
            logger.info("Loading features from cached file %s",
                        cached_features_file)
            features = torch.load(cached_features_file)
        else:
            features = []
            for ex_id, example in enumerate(examples):
                tokens_a = self.tokenizer.tokenize(example.text_a)
                tokens_b = None
                label_id = example.label

                if example.text_b:
                    tokens_b = self.tokenizer.tokenize(example.text_b)
                    # Modifies `tokens_a` and `tokens_b` in place so that the total
                    # length is less than the specified length.
                    # Account for [CLS], [SEP], [SEP] with "- 3"
                    self.truncate_seq_pair(tokens_a,
                                           tokens_b,
                                           max_length=max_seq_len - 3)
                else:
                    # Account for [CLS] and [SEP] with '-2'
                    if len(tokens_a) > max_seq_len - 2:
                        tokens_a = tokens_a[:max_seq_len - 2]
                tokens = ['[CLS]'] + tokens_a + ['[SEP]']
                segment_ids = [0] * len(tokens)
                if tokens_b:
                    tokens += tokens_b + ['[SEP]']
                    segment_ids += [1] * (len(tokens_b) + 1)

                input_ids = self.tokenizer.convert_tokens_to_ids(tokens)
                input_mask = [1] * len(input_ids)
                padding = [0] * (max_seq_len - len(input_ids))
                input_len = len(input_ids)

                input_ids += padding
                input_mask += padding
                segment_ids += padding

                assert len(input_ids) == max_seq_len
                assert len(input_mask) == max_seq_len
                assert len(segment_ids) == max_seq_len

                if ex_id < 2:
                    logger.info("*** Example ***")
                    logger.info(f"guid: {example.guid}" % ())
                    logger.info(
                        f"tokens: {' '.join([str(x) for x in tokens])}")
                    logger.info(
                        f"input_ids: {' '.join([str(x) for x in input_ids])}")
                    logger.info(
                        f"input_mask: {' '.join([str(x) for x in input_mask])}"
                    )
                    logger.info(
                        f"segment_ids: {' '.join([str(x) for x in segment_ids])}"
                    )
                    logger.info(f"label id : {label_id}")

                feature = InputFeature(input_ids=input_ids,
                                       input_mask=input_mask,
                                       segment_ids=segment_ids,
                                       label_id=label_id,
                                       input_len=input_len)
                features.append(feature)
                pbar(step=ex_id)
            logger.info("Saving features into cached file %s",
                        cached_features_file)
            torch.save(features, cached_features_file)
        return features

    def create_dataset(self, features):
        # Convert to Tensors and build dataset
        all_input_ids = torch.tensor([f.input_ids for f in features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in features],
                                       dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in features],
                                     dtype=torch.long)
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_label_ids)
        return dataset
 def __init__(self, vocab_path, do_lower_case):
     self.tokenizer = BertTokenizer(vocab_path, do_lower_case)
예제 #8
0
        )

        features.append(
            InputFeatures(
                data_id=data_id,
                example_id=example.example_id,
                input_ids=input_ids,
                attention_mask=attention_mask,
                token_type_ids=token_type_ids,
                label=label,
            )
        )

    for f in features[:2]:
        logger.info("*** Example ***")
        logger.info("feature: %s" % f)

    return features


if __name__ == '__main__':

    pretrained_token = './albert_model_pretrain/'
    tokenizer = BertTokenizer.from_pretrained(pretrained_token)
    dataset = MultipleChoiceDataset(data_dir='data/',
                                    tokenizer=tokenizer,
                                    task='justice_race',
                                    max_seq_length=512,
                                    overwrite_cache=False,
                                    mode=Split.train, )
예제 #9
0
def main():
    parser = ArgumentParser()
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="Number of epochs to train for")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])
    parser.add_argument('--num_eval_steps', default=100)
    parser.add_argument('--num_save_steps', default=200)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=4,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument('--max_grad_norm', default=1.0, type=float)
    parser.add_argument("--learning_rate",
                        default=0.00176,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O2',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    args = parser.parse_args()

    pregenerated_data = config['data_dir'] / "corpus/train"
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
        metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(f"cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}, "
        f"share_type: {args.share_type}")

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    seed_everything(args.seed)
    tokenizer = BertTokenizer(vocab_file=config['albert_vocab_path'])
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = BertConfig.from_pretrained(str(config['albert_config_path']),
                                             share_type=args.share_type)
    model = BertForPreTraining(config=bert_config)
    # model = BertForMaskedLM.from_pretrained(config['checkpoint_dir'] / 'checkpoint-580000')
    model.to(device)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        0.01
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    lr_scheduler = WarmupLinearSchedule(optimizer,
                                        warmup_steps=args.warmup_steps,
                                        t_total=num_train_optimization_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    global_step = 0
    mask_metric = LMAccuracy()
    sop_metric = LMAccuracy()
    tr_mask_acc = AverageMeter()
    tr_sop_acc = AverageMeter()
    tr_loss = AverageMeter()
    tr_mask_loss = AverageMeter()
    tr_sop_loss = AverageMeter()
    loss_fct = CrossEntropyLoss(ignore_index=-1)

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}")
    logger.info(f"  Num steps = {num_train_optimization_steps}")
    logger.info(f"  warmup_steps = {args.warmup_steps}")
    start_time = time.time()
    seed_everything(args.seed)  # Added here for reproducibility
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(
                file_id=idx,
                training_path=pregenerated_data,
                tokenizer=tokenizer,
                reduce_memory=args.reduce_memory,
                data_name=args.data_name)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset,
                                          sampler=train_sampler,
                                          batch_size=args.train_batch_size)
            model.train()
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                outputs = model(input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask)
                prediction_scores = outputs[0]
                seq_relationship_score = outputs[1]

                masked_lm_loss = loss_fct(
                    prediction_scores.view(-1, bert_config.vocab_size),
                    lm_label_ids.view(-1))
                next_sentence_loss = loss_fct(
                    seq_relationship_score.view(-1, 2), is_next.view(-1))
                loss = masked_lm_loss + next_sentence_loss

                mask_metric(logits=prediction_scores.view(
                    -1, bert_config.vocab_size),
                            target=lm_label_ids.view(-1))
                sop_metric(logits=seq_relationship_score.view(-1, 2),
                           target=is_next.view(-1))

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_mask_acc.update(mask_metric.value(), n=input_ids.size(0))
                tr_sop_acc.update(sop_metric.value(), n=input_ids.size(0))
                tr_loss.update(loss.item(), n=1)
                tr_mask_loss.update(masked_lm_loss.item(), n=1)
                tr_sop_loss.update(next_sentence_loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    lr_scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    now = time.time()
                    eta = now - start_time
                    if eta > 3600:
                        eta_format = ('%d:%02d:%02d' %
                                      (eta // 3600,
                                       (eta % 3600) // 60, eta % 60))
                    elif eta > 60:
                        eta_format = '%d:%02d' % (eta // 60, eta % 60)
                    else:
                        eta_format = '%ds' % eta
                    train_logs['loss'] = tr_loss.avg
                    train_logs['mask_acc'] = tr_mask_acc.avg
                    train_logs['sop_acc'] = tr_sop_acc.avg
                    train_logs['mask_loss'] = tr_mask_loss.avg
                    train_logs['sop_loss'] = tr_sop_loss.avg
                    show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
                                f'- ETA: {eta_format}' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_mask_acc.reset()
                    tr_sop_acc.reset()
                    tr_loss.reset()
                    tr_mask_loss.reset()
                    tr_sop_loss.reset()
                    start_time = now

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = config[
                            'checkpoint_dir'] / f'lm-checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(
                            model, 'module'
                        ) else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

                        # save config
                        output_config_file = output_dir / CONFIG_NAME
                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())

                        # save vocab
                        tokenizer.save_vocabulary(output_dir)
예제 #10
0
def main():
    config = {
        "model_type": "albert",
        "model_name_or_path": "outputs/lm-checkpoint",
        "task_name": "lcqmc",
        "do_train": True,
        "do_eval": True,
        "do_lower_case": True,
        "data_dir": "dataset/lcqmc",
        "vocab_file": "outputs/lm-checkpoint/vocab.txt",
        "config_path": "outputs/lm-checkpoint/config.json",
        "max_seq_length": 128,
        "output_dir": "outputs/lcqmc_output",
        "overwrite_output_dir": True,
        "learning_rate": 1e-5,
        "num_train_epochs": 3.0,
        "logging_steps": 14923,
        "save_steps": 14923,
        # "per_gpu_train_batch_size": 16,
        # "per_gpu_eval_batch_size": 16,
    }
    parser = argparse.ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=config["data_dir"],
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--model_type",
                        default=config["model_type"],
                        type=str,
                        help="Model type selected in the list: ")
    parser.add_argument(
        "--model_name_or_path",
        default=config["model_name_or_path"],
        type=str,
        help="Path to pre-trained model or shortcut name selected in the list")
    parser.add_argument(
        "--task_name",
        default=config["task_name"],
        type=str,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--output_dir",
        default=config["output_dir"],
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--vocab_file", default=config["vocab_file"], type=str)
    parser.add_argument("--spm_model_file", default='', type=str)
    parser.add_argument("--config_path",
                        default=config["config_path"],
                        type=str)

    ## Other parameters
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument(
        "--max_seq_length",
        default=config["max_seq_length"],
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train",
                        default=config["do_train"],
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=config["do_eval"],
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--do_predict",
        action='store_true',
        help="Whether to run the model in inference mode on the test set.")
    parser.add_argument(
        "--do_lower_case",
        default=config["do_lower_case"],
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-6,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs."
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument('--logging_steps',
                        type=int,
                        default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps',
                        type=int,
                        default=1000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        default=config["overwrite_output_dir"],
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")
    args = parser.parse_args()

    print(f" fun_classifier args {args} ")

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir +
                '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    # Setup logging
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()

    # config = AlbertConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
    #                                       num_labels=num_labels,finetuning_task=args.task_name)
    config = AlbertConfig.from_pretrained(args.config_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name)
    # tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case,
    #                                              spm_model_file=args.spm_model_file)
    tokenizer = BertTokenizer.from_pretrained(args.vocab_file,
                                              do_lower_case=args.do_lower_case)

    model = AlbertForSequenceClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config)

    # bert_config = AlbertConfig.from_pretrained(args.config_path)
    # model = AlbertForPreTraining(config=bert_config)
    # if args.model_path:
    #     model = AlbertForPreTraining.from_pretrained(args.model_path)

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
            spm_model_file=args.spm_model_file)
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))
예제 #11
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    try:
        processor = processors[data_args.task_name]()
        label_list = processor.get_labels()
        num_labels = len(label_list)
    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    tokenizer = BertTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AlbertForJustice.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
    )

    # Get datasets
    train_dataset = (MultipleChoiceDataset(
        data_dir=data_args.data_dir,
        tokenizer=tokenizer,
        task=data_args.task_name,
        max_seq_length=data_args.max_seq_length,
        overwrite_cache=data_args.overwrite_cache,
        mode=Split.train,
    ) if training_args.do_train else None)
    eval_dataset = (MultipleChoiceDataset(
        data_dir=data_args.data_dir,
        tokenizer=tokenizer,
        task=data_args.task_name,
        max_seq_length=data_args.max_seq_length,
        overwrite_cache=data_args.overwrite_cache,
        mode=Split.dev,
    ) if training_args.do_eval else None)

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds = p.predictions
        ac = (np.argmax(preds, axis=1) == p.label_ids).mean()
        # preds = np.argmax(p.predictions, axis=1)
        return {"acc": np.array(ac).mean()}

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        trainer.train(model_path=model_args.model_name_or_path if os.path.
                      isdir(model_args.model_name_or_path) else None)
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_master():
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()

        output_eval_file = os.path.join(training_args.output_dir,
                                        "eval_results.txt")
        if trainer.is_world_master():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in result.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))

                results.update(result)

    return results
예제 #12
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
            os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir)
            and training_args.do_train
            and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    try:
        processor = processors[data_args.task_name]()
        label_list = processor.get_labels()
    except KeyError:
        raise ValueError("Task not found: %s" % (data_args.task_name))

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    tokenizer = BertTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AlbertForJustice.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        cache_dir=model_args.cache_dir,
    )

    eval_dataset = (
        MultipleChoiceDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            task=data_args.task_name,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
        )
        if training_args.do_eval
        else None
    )

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds = p.predictions
        ac = (preds == p.label_ids).mean()
        # preds = np.argmax(p.predictions, axis=1)
        return {"acc": np.array(ac).mean()}

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        eval_dataset=eval_dataset,
        compute_metrics=compute_metrics,
    )

    # Evaluation
    output_map = {
        0: [],
        1: ['A'],
        2: ['B'],
        4: ['C'],
        8: ['D'],
        5: ['A', 'B'],
        6: ['B', 'C'],
        7: ['A', 'B', 'C'],
        9: ['A', 'D'],
        10: ['B', 'D'],
        11: ['A', 'B', 'D'],
        12: ['C', 'D'],
        13: ['A', 'C', 'D'],
        14: ['B', 'C', 'D'],
        15: ['A', 'B', 'C', 'D']
    }

    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        # result = trainer.evaluate()
        result = trainer.predict(eval_dataset)
        result_out = {}
        for i, j in zip(result.predictions, result.id):
            result_out[j] = output_map[i]

        output_eval_file = os.path.join(training_args.output_dir, "result.txt")

        json.dump(result_out, open(output_eval_file, "w", encoding="utf8"), indent=2, ensure_ascii=False,
                  sort_keys=True)
def main():
    parser = ArgumentParser()
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument("--do_data", default=False, action='store_true')
    parser.add_argument("--do_split", default=False, action='store_true')
    parser.add_argument("--do_lower_case", default=False, action='store_true')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument("--line_per_file", default=1000000000, type=int)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument(
        "--short_seq_prob",
        type=float,
        default=0.1,
        help="Probability of making a short sentence as a training example")
    parser.add_argument(
        "--masked_lm_prob",
        type=float,
        default=0.15,
        help="Probability of masking each token for the LM task")
    parser.add_argument(
        "--max_predictions_per_seq",
        type=int,
        default=20,
        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)

    tokenizer = BertTokenizer(vocab_file=config['checkpoint_dir'] /
                              'vocab.txt',
                              do_lower_case=args.do_lower_case)

    if args.do_split:
        corpus_path = config['data_dir'] / "corpus/corpus.txt"
        split_save_path = config['data_dir'] / "corpus/train"
        if not split_save_path.exists():
            split_save_path.mkdir(exist_ok=True)
        line_per_file = args.line_per_file
        command = f'split -a 4 -l {line_per_file} -d {corpus_path} {split_save_path}/shard_'
        os.system(f"{command}")

    if args.do_data:
        data_path = config['data_dir'] / "corpus/train"
        files = sorted([
            f for f in config['data_dir'].iterdir()
            if f.exists() and '.txt' in str(f)
        ])

        logger.info("--- pregenerate training data parameters ---")
        logger.info(f'max_seq_len: {args.max_seq_len}')
        logger.info(f"max_predictions_per_seq: {args.max_predictions_per_seq}")
        logger.info(f"masked_lm_prob: {args.masked_lm_prob}")
        logger.info(f"seed: {args.seed}")
        logger.info(f"mask file num : {args.file_num}")
        logger.info(f"train file num : {len(files)}")

        for idx in range(args.file_num):
            logger.info(f"pregenetate file_{idx}.json")
            save_filename = data_path / f"{args.data_name}_file_{idx}.json"
            num_instances = 0
            with save_filename.open('w') as fw:
                for file_idx in range(len(files)):
                    file_path = files[file_idx]
                    file_examples = create_training_instances(
                        input_file=file_path,
                        tokenizer=tokenizer,
                        max_seq_len=args.max_seq_len,
                        short_seq_prob=args.short_seq_prob,
                        masked_lm_prob=args.masked_lm_prob,
                        max_predictions_per_seq=args.max_predictions_per_seq)
                    file_examples = [
                        json.dumps(instance) for instance in file_examples
                    ]
                    for instance in file_examples:
                        fw.write(instance + '\n')
                        num_instances += 1
            metrics_file = data_path / f"{args.data_name}_file_{idx}_metrics.json"
            print(f"num_instances: {num_instances}")
            with metrics_file.open('w') as metrics_file:
                metrics = {
                    "num_training_examples": num_instances,
                    "max_seq_len": args.max_seq_len
                }
                metrics_file.write(json.dumps(metrics))
예제 #14
0
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}"
    )

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    seed_everything(args.seed)
    tokenizer = BertTokenizer.from_pretrained(args.vocab_path,
                                              do_lower_case=args.do_lower_case)
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = AlbertConfig.from_pretrained(args.config_path)
    model = AlbertForPreTraining(config=bert_config)
    if args.model_path:
        model = AlbertForPreTraining.from_pretrained(args.model_path)