def predict_json(): content = request.json try: params = content['sample'] except KeyError: return abort( 400, "Key 'sample' was not found in the request", ) if isinstance(params, str): params = process_str_params(params) elif isinstance(params, (tuple, list)): params = process_collection_params(params) else: abort( 400, "Invalid data for prediction. Expected 13 numerical objects", ) model_path = "./model/trained_model.pkl" if not os.path.exists(model_path): train_model() model = pickle.load(open(model_path, 'rb')) predict = model.predict(params) predict = {'class': str(predict[0])} return jsonify(predict)
def heart(params): params = params.split(',') params = [float(num) for num in params] model_path = "./model/trained_model.pkl" if not os.path.exists(model_path): train_model() model = pickle.load(open(model_path, 'rb')) params = np.array(params).reshape(1, -1) predict = model.predict(params) return str(predict)
def multi_nativebayes_train(model_data): # class_eachtoken_likelihood = {} vocabulary = model_data.get_vocabulary() for class_label in model_data.get_class_labels(): class_eachtoken_likelihood[class_label] = {} for voc in vocabulary: class_eachtoken_likelihood[class_label][voc] = 0 logprior = {} vocabularyCount = model_data.get_vocabularyCount() class_eachtoken_count = model_data.get_class_eachtoken_count() for class_label in model_data.get_class_labels(): total_class_token = model_data.get_total_class_token() logprior[class_label] = math.log(total_class_token[class_label] / vocabularyCount) for word in vocabulary: if (class_eachtoken_count[class_label][word] == 0): class_eachtoken_likelihood[class_label][word] = 0 else: class_eachtoken_likelihood[class_label][word] = math.log( class_eachtoken_count[class_label][word] / total_class_token[class_label]) train_model_data = train_model(logprior, class_eachtoken_likelihood, vocabulary, model_data.get_class_labels()) return train_model_data
def main(): # ============================ Setup =================================== configure_logger() config = get_config() # ========================== Load & prepare input data ============================== logging.info("Processing base data...") base_data_df = process_data(base_data_dir=config.base_data_dir, input_data_file=config.input_data_file) # ========================= Train model =============================== logging.info("Training model and evaluating...") model = train_model(base_data_df, config.population_tests_dir, grid_search) # ========================== Export Results =================================== logging.info("Saving model...") save_model(model, config.out_file)
def main(): final_model = train_model() predictions_df = predict(final_model) print(predictions_df) driver_alerts = set( predictions_df[predictions_df['alert'] == True]['driver_id']) for driver in driver_alerts: send_sms(driver) #if __name__ == '__main__': # main()
# read datasets --------------------------- imdb, roidb, valroidb, output_dir = read_datasets(args) # Remove roidb entries that have no usable RoIs. roidb = filter_roidb(roidb) valroidb = filter_roidb(valroidb) # config gpu tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True # -------------------build model----------------- # load networks --------------------------- model_net = load_network(args.net) # pre-training weights pre_net_file_path = load_net_weights(args.net) model_train, model_vol = build_model(imdb, model_net, pre_net_file_path) # -------------------build model----------------- # --------------------training------------------- train_model(imdb, roidb, model_train, valroidb, model_vol, output_dir, max_iters=args.max_iters) # --------------------training-------------------
if not os.path.exists('data/raw_data.csv'): process = CrawlerProcess(get_project_settings()) process.crawl(LyricsSpider) process.start() else: print( '\033[33m' + "WARNING: There is already data saved in the directory, if you want to collect new ones delete the raw_data.csv file in the data folder." + '\033[0;0m') print('----------------------------') print(' TRAINING THE MODEL ') print('----------------------------') train_df, test_df = prepare_data() train_model(API_KEY, train_df) print('----------------------------') print(' TESTING THE MODEL ') print('----------------------------') test_model(API_KEY, test_df) print('----------------------------') print(' PIPELINE FINISHED ') print('----------------------------') while True: answer = input('Do you want to launch the application? [Y/N] ') if answer.lower().strip() == 'y': os.system('cmd /k "streamlit run main.py"') elif answer.lower().strip() == 'n':