예제 #1
0
def test_inference_train():
    from glob import glob
    from model import load_model, find_best, delete_model
    import keras.backend as K

    from utils import get_session
    from transfer import inference_train

    name = 'test/transfer'
    delete_model(name)
    K.set_session(get_session())
    imgs_path = glob('data/DeepQ-Vivepaper/frame/**/*.png',
                     recursive=True)[:100]
    valid_csv = 'data/DeepQ-Vivepaper/data/annotations.csv'
    class_map = 'data/class-map.csv'
    thresh = 0.98
    model = load_model(find_best()[0], compile=True)
    buff = inference_train(model,
                           imgs_path,
                           valid_csv,
                           class_map,
                           thresh,
                           batch_size=4,
                           image_min_side=460,
                           image_max_side=1024,
                           name=name)
    buff.seek(0)
    print(buff.read())
예제 #2
0
def test_main():
    from inference import main
    from model import find_best
    weights = find_best()[0]
    print(weights)
    args = ('--weights %s --batch-size 1' % weights).split()
    score = main(args)
    assert score > 0
def main():
    """ 命令行参数及其整理 """
    parser = utils.MyArguments()
    parser.add_argument("--De", default=5.2, type=float, help="平均潜伏期")
    parser.add_argument("--Dq", default=14, type=float, help="平均隔离期")
    parser.add_argument("--c", default=13.0046, type=float, help="初始平均接触率")
    parser.add_argument("--q", default=0.0, type=float, help="初始隔离率")
    parser.add_argument("--beta", default=2.03e-9, type=float, help="基础传染概率")
    parser.add_argument("--theta",
                        default=1.6003,
                        type=float,
                        help="无症状感染者传染概率系数")
    parser.add_argument("--nu", default=1.5008, type=float, help="潜伏期传染概率系数")
    parser.add_argument("--phi", default=0.9, type=float, help="有症状感染者收治率")
    parser.add_argument("--gammaI",
                        default=0.1029,
                        type=float,
                        help="有症状感染者自愈速率")
    parser.add_argument("--gammaA",
                        default=0.2978,
                        type=float,
                        help="无症状感染者自愈速度")
    parser.add_argument("--gammaH",
                        default=1 / 10.5,
                        type=float,
                        help="医院治愈速率")
    parser.add_argument("--deltaI",
                        default=1 / 3.5,
                        type=float,
                        help="出现症状患者被收治的速率")
    parser.add_argument("--deltaQ",
                        default=0.1259,
                        type=float,
                        help="隔离的潜伏者出现症状(及时被收治)的速率")
    parser.add_argument("--rho",
                        default=0.6834,
                        type=float,
                        help="有症状感染者占所有感染者的比例")
    parser.add_argument("--use_19", action="store_true")
    parser.add_argument("--zero_spring", action="store_true")
    parser.add_argument("-pil",
                        "--piecewise_interval_length",
                        default=3,
                        type=int)
    args = parser.parse_args()  # 对于一些通用的参数,这里已经进行整理了
    """ 读取准备好的数据 """
    dat_file = "./DATA/Provinces.pkl"
    dataset = utils.Dataset(dat_file, args.t0, args.tm, args.fit_time_start)
    """ 构建、或读取、或训练模型 """
    # 根据不同的情况来得到合适的模型
    if args.model is not None and args.model != "fit":
        models = NetSEAIRQ_piecewise.load(args.model)
    else:  # 不然就进行训练
        # 设置我们拟合模型需要的数据
        if args.use_whhb:
            mask = None
        else:
            mask = np.full(dataset.num_regions, True, dtype=np.bool)
            mask[0] = False
        fit_start_index = (dataset.fit_start_t.ord - dataset.epi_t0.ord)
        fit_start_index = int(fit_start_index)
        fit_data_all = dataset.epi_times.delta[fit_start_index:]
        # 根据分段的宽度,设置多个模型,并将其训练用参数也
        pil = args.piecewise_interval_length
        n_models = int(ceil(fit_data_all.shape[0] / pil))
        models = []
        score_kwargs = []
        for i in range(n_models):
            model = NetSEAIRQ_piecewise(
                populations=dataset.populations,
                y0_hb=np.array([0, 0, 0, 0, args.y0, 0, 0]),
                score_type=args.fit_score,
                gamma_func_kwargs={
                    "gammas": (dataset.out19_dict
                               if args.use_19 else dataset.out20_dict),
                    "zero_period":
                    (dataset.zero_period.delta if args.zero_spring else None)
                },
                Pmn_func_kwargs={"pmn": dataset.pmn_matrix_relative},
                De=args.De,
                Dq=args.Dq,
                c=args.c,
                q=args.q,
                beta=args.beta,
                rho=args.rho,
                deltaI=args.deltaI,
                deltaQ=args.deltaQ,
                gammaI=args.gammaI,
                gammaA=args.gammaH,
                gammaH=args.gammaH,
                theta=args.theta,
                nu=args.nu,
                phi=args.phi,
            )
            use_dat_start = i * pil
            use_dat_end = min((i + 1) * pil, fit_data_all.shape[0])
            score_kwarg = {
                "times": dataset.epi_times.delta[use_dat_start:use_dat_end],
                "mask": mask,
                "trueH": dataset.trueH[use_dat_start:use_dat_end],
                # "trueR": (dataset.trueD + dataset.trueR)[
                #     use_dat_start:use_dat_end]
            }
            models.append(model)
            score_kwargs.append(score_kwarg)
        # 搜索最优参数
        if args.fit_method == "annealing":
            fit_kwargs = {"callback": utils.callback, "method": "annealing"}
        else:
            fit_kwargs = {
                "method": args.fit_method,
                "fig_dir": args.save_dir + "/",
                "njobs": -1,
                "NIND": args.geatpy_nind,
                "MAXGEN": args.geatpy_maxgen,
                "n_populations": args.geatpy_npop
            }
        last_y0 = None
        predHs = []
        all_opts = []
        for i, (model, score_kwarg) in enumerate(zip(models, score_kwargs)):
            # 被这次训练的时间整理出来
            start_time = utils.CustomDate.from_delta(
                score_kwarg["times"].min(), dataset.t0.str)
            end_time = utils.CustomDate.from_delta(score_kwarg["times"].max(),
                                                   dataset.t0.str)
            print("开始训练 %s<->%s" % (start_time.str, end_time.str))
            # 第一次训练的模型和后面训练的模型使用不同的参数
            # 之后训练的模型要使用前面模型的最后一天输出作为y0
            if i == 0:
                model.no_fit_params([])
            else:
                model.no_fit_params(["y0_hb[2:4]"])
                model.set_y0(last_y0)
            # 得到训练参数,进行训练
            dim, lb, ub = model.fit_params_range()
            opt_res = find_best(lambda x: score_func(x, model, score_kwarg),
                                dim, lb, ub, **fit_kwargs)
            all_opts.append(opt_res)
            # 将得到的最优参数设置到模型中
            model.set_params(opt_res["BestParam"])
            # 预测结果
            preds = model.predict(score_kwarg["times"])
            predHs.append(preds[0])
            # 预测结果中最后一天作为新的y0
            last_y0 = np.concatenate(preds, axis=1)[-1, :]
    predHs = np.concatenate(predHs, axis=0)
    utils.save(all_opts, os.path.join(args.save_dir, "opt_res.pkl"))
    utils.save([m.kwargs for m in models],
               os.path.join(args.save_dir, "models.pkl"))
    # model.save(os.path.join(args.save_dir, "model.pkl"))
    # utils.save(opt_res, os.path.join(args.save_dir, "opt_res.pkl"))
    """ 计算相关指标以及绘制图像 """
    # 预测R0
    pass

    # 计算每个地区的曲线下面积以及面积差,并保存
    # auc = under_area(
    #     dataset.epi_times.delta,
    #     dataset.trueH,
    #     dataset.pred_times.delta,
    #     nopr_preds[0],
    # )
    # auc_df = pd.DataFrame(
    #     auc.T, columns=["true_area", "pred_area", "diff_area"],
    #     index=dataset.regions
    # )
    # auc_df["population"] = dataset.populations
    # auc_df["diff_norm"] = auc_df.diff_area / auc_df.population
    # auc_df.sort_values("diff_norm", inplace=True)

    # 为每个地区绘制曲线图
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    img_dir = os.path.join(args.save_dir, "imgs")
    if not os.path.exists(img_dir):
        os.mkdir(img_dir)
    for i, reg in enumerate(dataset.regions):
        """
        y0 = [H R E A I Sq Eq] + [S]
        """
        plot_one_regions(
            reg,
            [
                ("trueH", dataset.epi_times.ord.astype("int"),
                 dataset.trueH[:, i], "ro"),
                # ("trueR", dataset.epi_times.ord.astype("int"),
                #  dataset.trueR[:, i]+dataset.trueD[:, i], "bo"),
                # ("predH", dataset.pred_times.ord.astype("int"),
                #  predHs[:, i], "r"),
                ("predH", dataset.epi_times.ord.astype("int"), predHs[:,
                                                                      i], "r"),
                # ("predR", dataset.pred_times.ord.astype("int"),
                #  prot_preds[1][:, i], "b"),
                # ("predE", dataset.pred_times.ord.astype("int"),
                #  prot_preds[3][:, i], "y"),
                # ("predA", dataset.pred_times.ord.astype("int"),
                #  prot_preds[4][:, i], "g"),
                # ("predI", dataset.pred_times.ord.astype("int"),
                #  prot_preds[4][:, i], "c"),
            ],
            [
                ("trueH", dataset.epi_times.ord.astype("int"),
                 dataset.trueH[:, i], "ro"),
                # ("trueR", dataset.epi_times.ord.astype("int"),
                #  dataset.trueR[:, i]+dataset.trueD[:, i], "bo"),
                # ("predH", dataset.pred_times.ord.astype("int"),
                #  predHs[:, i], "r"),
                ("predH", dataset.epi_times.ord.astype("int"), predHs[:,
                                                                      i], "r"),
                # ("predR", dataset.pred_times.ord.astype("int"),
                #  nopr_preds[1][:, i], "b"),
                # ("predE", dataset.pred_times.ord.astype("int"),
                #  nopr_preds[3][:, i], "y"),
                # ("predA", dataset.pred_times.ord.astype("int"),
                #  nopr_preds[4][:, i], "g"),
                # ("predI", dataset.pred_times.ord.astype("int"),
                #  nopr_preds[4][:, i], "c"),
            ],
            save_dir=img_dir)
    # # 保存结果
    # for i, name in enumerate([
    #     "predH", "predR", "predE", "predA", "predI"
    # ]):
    #     pd.DataFrame(
    #         prot_preds[i],
    #         columns=dataset.regions,
    #         index=dataset.pred_times.str
    #     ).to_csv(
    #         os.path.join(args.save_dir, "protect_%s.csv" % name)
    #     )
    #     pd.DataFrame(
    #         nopr_preds[i],
    #         columns=dataset.regions,
    #         index=dataset.pred_times.str
    #     ).to_csv(
    #         os.path.join(args.save_dir, "noprotect_%s.csv" % name)
    #     )
    # auc_df.to_csv(os.path.join(args.save_dir, "auc.csv"))
    # # 这里保存的是原始数据
    # for i, attr_name in enumerate(["trueD", "trueH", "trueR"]):
    #     save_arr = getattr(dataset, attr_name)
    #     pd.DataFrame(
    #         save_arr,
    #         columns=dataset.regions,
    #         index=dataset.epi_times.str
    #     ).to_csv(os.path.join(args.save_dir, "%s.csv" % attr_name))
    # 保存args到路径中(所有事情都完成再保存数据,安全)
    save_args = deepcopy(args.__dict__)
    save_args["model_type"] = "NetSEAIRQ-piecewise"
    utils.save(save_args, os.path.join(args.save_dir, "args.json"), "json")
예제 #4
0
def main():

    """ 命令行参数及其整理 """
    parser = utils.MyArguments()
    parser.add_argument("--De", default=5.2, type=float, help="平均潜伏期")
    parser.add_argument("--Dq", default=14, type=float, help="平均隔离期")
    parser.add_argument("--c", default=13.0046, type=float, help="初始平均接触率")
    parser.add_argument("--q", default=0.0, type=float, help="初始隔离率")
    parser.add_argument(
        "--beta", default=2.03e-9, type=float, help="基础传染概率"
    )
    parser.add_argument(
        "--theta", default=1.6003, type=float, help="无症状感染者传染概率系数"
    )
    parser.add_argument(
        "--nu", default=1.5008, type=float, help="潜伏期传染概率系数"
    )
    parser.add_argument(
        "--phi", default=0.9, type=float, help="有症状感染者收治率"
    )
    parser.add_argument(
        "--gammaI", default=0.1029, type=float, help="有症状感染者自愈速率"
    )
    parser.add_argument(
        "--gammaA", default=0.2978, type=float, help="无症状感染者自愈速度"
    )
    parser.add_argument(
        "--gammaH", default=1/10.5, type=float, help="医院治愈速率"
    )
    parser.add_argument(
        "--deltaI", default=1/3.5, type=float, help="出现症状患者被收治的速率"
    )
    parser.add_argument(
        "--deltaQ", default=0.1259, type=float,
        help="隔离的潜伏者出现症状(及时被收治)的速率"
    )
    parser.add_argument(
        "--rho", default=0.6834, type=float, help="有症状感染者占所有感染者的比例"
    )
    parser.add_argument("--protect_ck", default=0.0, type=float)
    parser.add_argument("--protect_qk", default=0.0, type=float)
    parser.add_argument("--use_19", action="store_true")
    parser.add_argument("--zero_spring", action="store_true")
    args = parser.parse_args()  # 对于一些通用的参数,这里已经进行整理了

    """ 读取准备好的数据 """
    dat_file = "./DATA/Provinces.pkl"
    dataset = utils.Dataset(dat_file, args.t0, args.tm, args.fit_time_start)

    """ 构建、或读取、或训练模型 """
    # 根据不同的情况来得到合适的模型
    if args.model is not None and args.model != "fit":
        model = NetSEAIRQ.load(args.model)
    else:
        model = NetSEAIRQ(
            populations=dataset.populations,
            y0for1=np.array([0, 0, 0, 0, args.y0, 0, 0]),
            protect=True, score_type=args.fit_score,
            protect_args={
                "t0": dataset.protect_t0.delta,
                "c_k": args.protect_ck,
                "q_k": args.protect_qk
            },
            gamma_func_kwargs={
                "gammas": (dataset.out19_dict if args.use_19
                           else dataset.out20_dict),
                "zero_period": (dataset.zero_period.delta
                                if args.zero_spring else None)
            },
            Pmn_func_kwargs={"pmn": dataset.pmn_matrix_relative},
            De=args.De, Dq=args.Dq, c=args.c, q=args.q, beta=args.beta,
            rho=args.rho, deltaI=args.deltaI, deltaQ=args.deltaQ,
            gammaI=args.gammaI, gammaA=args.gammaH, gammaH=args.gammaH,
            theta=args.theta, nu=args.nu, phi=args.phi,
        )
        if args.model == "fit":
            # 设置我们拟合模型需要的数据
            if args.use_whhb:
                mask = None
            else:
                mask = np.full(dataset.num_regions, True, dtype=np.bool)
                mask[0] = False
            fit_start_index = (dataset.fit_start_t.ord - dataset.epi_t0.ord)
            fit_start_index = int(fit_start_index)
            score_kwargs = {
                "times": dataset.epi_times.delta[fit_start_index:],
                "mask": mask,
            }
            score_kwargs["trueH"] = dataset.trueH
            # score_kwargs["trueR"] = dataset.trueD + dataset.trueR
            # 搜索
            if args.fit_method == "annealing":
                fit_kwargs = {
                    "callback": utils.callback, "method": "annealing"
                }
            else:
                fit_kwargs = {
                    "method": args.fit_method,
                    "fig_dir": args.save_dir+"/",
                    "njobs": -1,
                    "NIND": args.geatpy_nind,
                    "MAXGEN": args.geatpy_maxgen,
                    "n_populations": args.geatpy_npop
                }
            dim, lb, ub = model.fit_params_range()
            opt_res = find_best(
                lambda x: score_func(x, model, score_kwargs),
                dim, lb, ub, **fit_kwargs
            )

            # 把拟合得到的参数整理成dataframe,然后保存
            temp_d, temp_i = {}, 0
            for i, (k, vs) in enumerate(model.fit_params_info.items()):
                params_k = opt_res["BestParam"][temp_i:(temp_i+vs[0])]
                for j, v in enumerate(params_k):
                    temp_d[k+str(j)] = v
                temp_i += vs[0]
            pd.Series(temp_d).to_csv(
                os.path.join(args.save_dir, "params.csv")
            )
            # 将得到的最优参数设置到模型中,并保存
            model.set_params(opt_res["BestParam"])
            model.save(os.path.join(args.save_dir, "model.pkl"))
            utils.save(opt_res, os.path.join(args.save_dir, "opt_res.pkl"))

    # 预测结果
    prot_preds = model.predict(dataset.pred_times.delta)
    model.protect = False
    nopr_preds = model.predict(dataset.pred_times.delta)

    """ 计算相关指标以及绘制图像 """
    # 预测R0
    pass

    # 计算每个地区的曲线下面积以及面积差,并保存
    auc = under_area(
        dataset.epi_times.delta,
        dataset.trueH,
        dataset.pred_times.delta,
        nopr_preds[0],
    )
    auc_df = pd.DataFrame(
        auc.T, columns=["true_area", "pred_area", "diff_area"],
        index=dataset.regions
    )
    auc_df["population"] = dataset.populations
    auc_df["diff_norm"] = auc_df.diff_area / auc_df.population
    auc_df.sort_values("diff_norm", inplace=True)

    # 为每个地区绘制曲线图
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    img_dir = os.path.join(args.save_dir, "imgs")
    if not os.path.exists(img_dir):
        os.mkdir(img_dir)
    for i, reg in enumerate(dataset.regions):
        """
        y0 = [H R E A I Sq Eq] + [S]
        """
        plot_one_regions(
            reg, [
                ("trueH", dataset.epi_times.ord.astype("int"),
                 dataset.trueH[:, i], "ro"),
                # ("trueR", dataset.epi_times.ord.astype("int"),
                #  dataset.trueR[:, i]+dataset.trueD[:, i], "bo"),
                ("predH", dataset.pred_times.ord.astype("int"),
                 prot_preds[0][:, i], "r"),
                # ("predR", dataset.pred_times.ord.astype("int"),
                #  prot_preds[1][:, i], "b"),
                # ("predE", dataset.pred_times.ord.astype("int"),
                #  prot_preds[3][:, i], "y"),
                # ("predA", dataset.pred_times.ord.astype("int"),
                #  prot_preds[4][:, i], "g"),
                # ("predI", dataset.pred_times.ord.astype("int"),
                #  prot_preds[4][:, i], "c"),
            ],
            [
                ("trueH", dataset.epi_times.ord.astype("int"),
                 dataset.trueH[:, i], "ro"),
                # ("trueR", dataset.epi_times.ord.astype("int"),
                #  dataset.trueR[:, i]+dataset.trueD[:, i], "bo"),
                ("predH", dataset.pred_times.ord.astype("int"),
                 nopr_preds[0][:, i], "r"),
                # ("predR", dataset.pred_times.ord.astype("int"),
                #  nopr_preds[1][:, i], "b"),
                # ("predE", dataset.pred_times.ord.astype("int"),
                #  nopr_preds[3][:, i], "y"),
                # ("predA", dataset.pred_times.ord.astype("int"),
                #  nopr_preds[4][:, i], "g"),
                # ("predI", dataset.pred_times.ord.astype("int"),
                #  nopr_preds[4][:, i], "c"),
            ],
            save_dir=img_dir
        )
    # 保存结果
    for i, name in enumerate([
        "predH", "predR", "predE", "predA", "predI"
    ]):
        pd.DataFrame(
            prot_preds[i],
            columns=dataset.regions,
            index=dataset.pred_times.str
        ).to_csv(
            os.path.join(args.save_dir, "protect_%s.csv" % name)
        )
        pd.DataFrame(
            nopr_preds[i],
            columns=dataset.regions,
            index=dataset.pred_times.str
        ).to_csv(
            os.path.join(args.save_dir, "noprotect_%s.csv" % name)
        )
    auc_df.to_csv(os.path.join(args.save_dir, "auc.csv"))
    # 这里保存的是原始数据
    for i, attr_name in enumerate(["trueD", "trueH", "trueR"]):
        save_arr = getattr(dataset, attr_name)
        pd.DataFrame(
            save_arr,
            columns=dataset.regions,
            index=dataset.epi_times.str
        ).to_csv(os.path.join(args.save_dir, "%s.csv" % attr_name))
    # 保存args到路径中(所有事情都完成再保存数据,安全)
    save_args = deepcopy(args.__dict__)
    save_args["model_type"] = "NetSEAIRQ"
    utils.save(save_args, os.path.join(args.save_dir, "args.json"), "json")
예제 #5
0
def main():
    """ 命令行参数及其整理 """
    parser = utils.MyArguments()
    parser.add_argument("--De", default=5.2, type=float)
    parser.add_argument("--Di", default=11.5, type=float)
    parser.add_argument("--alpha_E", default=0.0, type=float)
    parser.add_argument("--alpha_I", default=0.4, type=float)
    parser.add_argument("--protect_k", default=0.0, type=float)
    parser.add_argument("--use_19", action="store_true")
    parser.add_argument("--zero_spring", action="store_true")
    args = parser.parse_args()  # 对于一些通用的参数,这里已经进行整理了
    """ 读取准备好的数据 """
    # if args.region_type == "city":
    #     dat_file = "./DATA/City.pkl"
    # else:
    dat_file = "./DATA/Provinces.pkl"
    dataset = utils.Dataset(dat_file, args.t0, args.tm, args.fit_time_start)
    """ 构建、或读取、或训练模型 """
    # 根据不同的情况来得到合适的模型
    if args.model is not None:
        model = NetSEIR.load(args.model)
    else:
        model = NetSEIR(
            De=args.De,
            Di=args.Di,
            populations=dataset.populations,
            y0for1=args.y0,
            alpha_I=args.alpha_I,
            alpha_E=args.alpha_E,
            protect=True,
            score_type=args.fit_score,
            protect_args={
                "t0": dataset.protect_t0.delta,
                "k": args.protect_k
            },
            gamma_func_kwargs={
                "gammas":
                (dataset.out19_dict if args.use_19 else dataset.out20_dict),
                "zero_period":
                (dataset.zero_period.delta if args.zero_spring else None)
            },
            Pmn_func_kwargs={"pmn": dataset.pmn_matrix_relative})
    if args.fit:
        # 设置我们拟合模型需要的数据
        if args.use_whhb:
            mask = None
        else:
            mask = np.full(dataset.num_regions, True, dtype=np.bool)
            mask[0] = False
        fit_start_index = (dataset.fit_start_t.ord - dataset.epi_t0.ord)
        fit_start_index = int(fit_start_index)
        score_kwargs = {
            "times": dataset.epi_times.delta[fit_start_index:],
            "true_infects": dataset.trueH[fit_start_index:, :],
            "mask": mask,
        }
        # 搜索
        if args.fit_method == "annealing":
            fit_kwargs = {"callback": utils.callback, "method": "annealing"}
        else:
            fit_kwargs = {
                "method": "SEGA",
                "fig_dir": args.save_dir + "/",
                "njobs": -1,
                "NIND": args.geatpy_nind,
                "MAXGEN": args.geatpy_maxgen,
                "n_populations": args.geatpy_npop
            }
        dim, lb, ub = model.fit_params_range()
        opt_res = find_best(lambda x: score_func(x, model, score_kwargs), dim,
                            lb, ub, **fit_kwargs)

        # 把拟合得到的参数整理成dataframe,然后保存
        temp_d, temp_i = {}, 0
        for i, (k, vs) in enumerate(model.fit_params_info.items()):
            params_k = opt_res["BestParam"][temp_i:(temp_i + vs[0])]
            for j, v in enumerate(params_k):
                temp_d[k + str(j)] = v
            temp_i += vs[0]
        pd.Series(temp_d).to_csv(os.path.join(args.save_dir, "params.csv"))
        # 将得到的最优参数设置到模型中,并保存
        model.set_params(opt_res["BestParam"])
        model.save(os.path.join(args.save_dir, "model.pkl"))
        utils.save(opt_res, os.path.join(args.save_dir, "opt_res.pkl"))

    # 预测结果
    prot_preds = model.predict(dataset.pred_times.delta)
    model.protect = False
    nopr_preds = model.predict(dataset.pred_times.delta)
    """ 计算相关指标以及绘制图像 """
    # 预测R0
    pass

    # 计算每个地区的曲线下面积以及面积差,并保存
    auc = under_area(
        dataset.epi_times.delta,
        dataset.trueH,
        dataset.pred_times.delta,
        nopr_preds[2],
    )
    auc_df = pd.DataFrame(auc.T,
                          columns=["true_area", "pred_area", "diff_area"],
                          index=dataset.regions)
    auc_df["population"] = dataset.populations
    auc_df["diff_norm"] = auc_df.diff_area / auc_df.population
    auc_df.sort_values("diff_norm", inplace=True)
    # utils.save(auc, os.path.join(args.save_dir, "auc.pkl"))

    # 为每个地区绘制曲线图
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    img_dir = os.path.join(args.save_dir, "imgs")
    if not os.path.exists(img_dir):
        os.mkdir(img_dir)
    for i, reg in enumerate(dataset.regions):
        plot_one_regions(reg, [("true", dataset.epi_times.ord.astype("int"),
                                dataset.trueH[:, i], "ro"),
                               ("predI", dataset.pred_times.ord.astype("int"),
                                prot_preds[2][:, i], "r"),
                               ("predE", dataset.pred_times.ord.astype("int"),
                                prot_preds[1][:, i], "y"),
                               ("predR", dataset.pred_times.ord.astype("int"),
                                prot_preds[3][:, i], "b")],
                         [("true", dataset.epi_times.ord.astype("int"),
                           dataset.trueH[:, i], "ro"),
                          ("predI", dataset.pred_times.ord.astype("int"),
                           nopr_preds[2][:, i], "r"),
                          ("predE", dataset.pred_times.ord.astype("int"),
                           nopr_preds[1][:, i], "y"),
                          ("predR", dataset.pred_times.ord.astype("int"),
                           nopr_preds[3][:, i], "b")],
                         save_dir=img_dir)

    # 保存结果
    for i, name in enumerate(["predS", "predE", "predI", "predR"]):
        pd.DataFrame(prot_preds[i],
                     columns=dataset.regions,
                     index=dataset.pred_times.str).to_csv(
                         os.path.join(args.save_dir, "protect_%s.csv" % name))
        pd.DataFrame(nopr_preds[i],
                     columns=dataset.regions,
                     index=dataset.pred_times.str).to_csv(
                         os.path.join(args.save_dir,
                                      "noprotect_%s.csv" % name))
    auc_df.to_csv(os.path.join(args.save_dir, "auc.csv"))
    # 这里保存的是原始数据
    for i, attr_name in enumerate(["trueD", "trueH", "trueR"]):
        save_arr = getattr(dataset, attr_name)
        pd.DataFrame(save_arr,
                     columns=dataset.regions,
                     index=dataset.epi_times.str).to_csv(
                         os.path.join(args.save_dir, "%s.csv" % attr_name))
    # 保存args到路径中(所有事情都完成再保存数据,安全)
    save_args = deepcopy(args.__dict__)
    save_args["model_type"] = "NetSEIR"
    utils.save(save_args, os.path.join(args.save_dir, "args.json"), "json")