def __init__(self, model_path): self.model = handpose_model() if torch.cuda.is_available(): self.model = self.model.cuda() model_dict = util.transfer(self.model, torch.load(model_path)) self.model.load_state_dict(model_dict) self.model.eval()
from model import handpose_model import torch from tqdm import tqdm import json model = handpose_model() size = {} for i in tqdm(range(10, 1000)): data = torch.randn(1, 3, i, i) if torch.cuda.is_available(): data = data.cuda() size[i] = model(data).size(2) with open('hand_model_output_size.json') as f: json.dump(size, f)