model = model_.ResNet_pca(nclasses=args.n_classes) elif args.model == 'lcnn_9': model = model_.lcnn_9layers(nclasses=args.n_classes) elif args.model == 'lcnn_29': model = model_.lcnn_29layers_v2(nclasses=args.n_classes) elif args.model == 'lcnn_9_pca': model = model_.lcnn_9layers_pca(nclasses=args.n_classes) elif args.model == 'lcnn_29_pca': model = model_.lcnn_29layers_v2_pca(nclasses=args.n_classes) elif args.model == 'lcnn_9_icqspec': model = model_.lcnn_9layers_icqspec(nclasses=args.n_classes) elif args.model == 'lcnn_9_prodspec': model = model_.lcnn_9layers_prodspec(nclasses=args.n_classes) elif args.model == 'lcnn_9_CC': model = model_.lcnn_9layers_CC(nclasses=args.n_classes, ncoef=args.ncoef, init_coef=args.init_coef) elif args.model == 'lcnn_29_CC': model = model_.lcnn_29layers_CC(nclasses=args.n_classes, ncoef=args.ncoef, init_coef=args.init_coef) elif args.model == 'resnet_CC': model = model_.ResNet_CC(nclasses=args.n_classes, ncoef=args.ncoef, init_coef=args.init_coef) if args.pretrained_path is not None: ckpt = torch.load(args.pretrained_path, map_location=lambda storage, loc: storage) try:
elif args.model == 'resnet_pca': model = model_.ResNet_pca() elif args.model == 'lcnn_9': model = model_.lcnn_9layers() elif args.model == 'lcnn_29': model = model_.lcnn_29layers_v2() elif args.model == 'lcnn_9_pca': model = model_.lcnn_9layers_pca() elif args.model == 'lcnn_29_pca': model = model_.lcnn_29layers_v2_pca() elif args.model == 'lcnn_9_icqspec': model = model_.lcnn_9layers_icqspec() elif args.model == 'lcnn_9_prodspec': model = model_.lcnn_9layers_prodspec() elif args.model == 'lcnn_9_CC': model = model_.lcnn_9layers_CC(ncoef=args.ncoef, init_coef=args.init_coef) elif args.model == 'lcnn_29_CC': model = model_.lcnn_29layers_CC(ncoef=args.ncoef, init_coef=args.init_coef) elif args.model == 'resnet_34_CC': model = model_.ResNet_34_CC(ncoef=args.ncoef, init_coef=args.init_coef) print('Loading model') ckpt = torch.load(args.cp_path, map_location=lambda storage, loc: storage) model.load_state_dict(ckpt['model_state'], strict=True) model.eval() print('Model loaded') print('Loading data')
elif args.model_la == 'resnet_pca': model_la = model_.ResNet_pca() elif args.model_la == 'lcnn_9': model_la = model_.lcnn_9layers() elif args.model_la == 'lcnn_29': model_la = model_.lcnn_29layers_v2() elif args.model_la == 'lcnn_9_pca': model_la = model_.lcnn_9layers_pca() elif args.model_la == 'lcnn_29_pca': model_la = model_.lcnn_29layers_v2_pca() elif args.model_la == 'lcnn_9_icqspec': model_la = model_.lcnn_9layers_icqspec() elif args.model_la == 'lcnn_9_prodspec': model_la = model_.lcnn_9layers_prodspec() elif args.model_la == 'lcnn_9_CC': model_la = model_.lcnn_9layers_CC(ncoef=args.ncoef_la) elif args.model_la == 'lcnn_29_CC': model_la = model_.lcnn_29layers_CC(ncoef=args.ncoef_la) elif args.model_la == 'resnet_CC': model_la = model_.ResNet_CC(ncoef=args.ncoef_la) if args.model_pa == 'lstm': model_pa = model_.cnn_lstm() elif args.model_pa == 'resnet': model_pa = model_.ResNet() elif args.model_pa == 'resnet_pca': model_pa = model_.ResNet_pca() elif args.model_pa == 'lcnn_9': model_pa = model_.lcnn_9layers() elif args.model_pa == 'lcnn_29': model_pa = model_.lcnn_29layers_v2()
if args.model == 'lcnn_29_pca' or args.model == 'all': batch = torch.rand(3, 1, 120, 300) model = model_.lcnn_29layers_v2_pca() mu = model.forward(batch) print('lcnn_29_pca', mu.size()) if args.model == 'lcnn_9_icqspec' or args.model == 'all': batch = torch.rand(3, 1, 256, 300) model = model_.lcnn_9layers_icqspec() mu = model.forward(batch) print('lcnn_9_icqspec', mu.size()) if args.model == 'lcnn_9_prodspec' or args.model == 'all': batch = torch.rand(3, 1, 257, 300) model = model_.lcnn_9layers_prodspec() mu = model.forward(batch) print('lcnn_9_prodspec', mu.size()) if args.model == 'lcnn_9_CC' or args.model == 'all': batch = torch.rand(3, 1, 90, 300) model = model_.lcnn_9layers_CC() mu = model.forward(batch) print('lcnn_9_CC', mu.size()) if args.model == 'lcnn_29_CC' or args.model == 'all': batch = torch.rand(3, 1, 90, 300) model = model_.lcnn_29layers_CC() mu = model.forward(batch) print('lcnn_29_CC', mu.size()) if args.model == 'resnet_34_CC' or args.model == 'all': batch = torch.rand(3, 1, 90, 300) model = model_.ResNet_34_CC() mu = model.forward(batch) print('resnet_34_CC', mu.size())