def segment_normal_distribution_shift_flip_brightness_shadow_reg(): data_set = DriveDataSet.from_csv( "datasets/udacity-sample-track-1/driving_log.csv", crop_images=True, all_cameras_images=True, filter_method=drive_record_filter_include_all) # fine tune every part of training data so that make it meat std distrubtion allocator = AngleSegmentRecordAllocator( data_set, AngleSegment((-1.5, -0.5), 10), # big sharp left AngleSegment((-0.5, -0.25), 14), # sharp left AngleSegment((-0.25, -0.249), 3), # sharp turn left (zero right camera) AngleSegment((-0.249, -0.1), 10), # big turn left AngleSegment((-0.1, 0), 11), # straight left AngleSegment((0, 0.001), 4), # straight zero center camera AngleSegment((0.001, 0.1), 11), # straight right AngleSegment((0.1, 0.25), 10), # big turn right AngleSegment((0.25, 0.251), 3), # sharp turn right (zero left camera) AngleSegment((0.251, 0.5), 14), # sharp right AngleSegment((0.5, 1.5), 10) # big sharp right ) # a pipe line with shift -> flip -> brightness -> shadow augment processes augment = pipe_line_generators( shift_image_generator(angle_offset_pre_pixel=0.002), flip_generator, brightness_image_generator(0.35), shadow_generator) data_generator = DataGenerator(allocator.allocate, augment) model = nvidia_with_regularizer(input_shape=data_set.output_shape(), dropout=0.2) Trainer(model, learning_rate=0.0001, epoch=45, multi_process=use_multi_process, custom_name=inspect.stack()[0][3]).fit_generator( data_generator.generate(batch_size=256))
def segment_normal_distribution_flip_brightness_shadow_reg(): data_set_train, data_set_val = create_real_dataset( filter_method=drive_record_filter_include_all) # fine tune every part of training data so that make it meat std distrubtion allocator_train = AngleSegmentRecordAllocator( data_set_train, AngleSegment((-1.5, -0.5), 10), # big sharp left AngleSegment((-0.5, -0.25), 14), # sharp left AngleSegment((-0.25, -0.249), 0.5), # sharp turn left (zero right camera) AngleSegment((-0.249, -0.1), 12), # big turn left AngleSegment((-0.1, 0), 13), # straight left AngleSegment((0, 0.001), 1), # straight zero center camera AngleSegment((0.001, 0.1), 13), # straight right AngleSegment((0.1, 0.25), 12), # big turn right AngleSegment((0.25, 0.251), 0.5), # sharp turn right (zero left camera) AngleSegment((0.251, 0.5), 14), # sharp right AngleSegment((0.5, 1.5), 10) # big sharp right ) allocator_val = AngleSegmentRecordAllocator( data_set_val, AngleSegment((-1.5, -0.5), 10), # big sharp left AngleSegment((-0.5, -0.25), 14), # sharp left AngleSegment((-0.25, -0.249), 0.5), # sharp turn left (zero right camera) AngleSegment((-0.249, -0.1), 12), # big turn left AngleSegment((-0.1, 0), 13), # straight left AngleSegment((0, 0.001), 1), # straight zero center camera AngleSegment((0.001, 0.1), 13), # straight right AngleSegment((0.1, 0.25), 12), # big turn right AngleSegment((0.25, 0.251), 0.5), # sharp turn right (zero left camera) AngleSegment((0.251, 0.5), 14), # sharp right AngleSegment((0.5, 1.5), 10) # big sharp right ) # a pipe line with shift -> flip -> brightness -> shadow augment processes data_generator_train = DataGenerator( allocator_train.allocate, pipe_line_generators(flip_random_generator, brightness_image_generator(0.35), shadow_generator)) data_generator_val = DataGenerator( allocator_val.allocate, pipe_line_generators(flip_random_generator, brightness_image_generator(0.35), shadow_generator)) model = nvidia_with_regularizer(input_shape=data_set_train.output_shape(), dropout=0.2) Trainer(model, learning_rate=0.0001, epoch=450, multi_process=use_multi_process, custom_name="noshift").fit_generator( data_generator_train.generate(batch_size=256), data_generator_val.generate(batch_size=256))