def segment_normal_distribution_shift_flip_brightness_shadow_reg():
    data_set = DriveDataSet.from_csv(
        "datasets/udacity-sample-track-1/driving_log.csv",
        crop_images=True,
        all_cameras_images=True,
        filter_method=drive_record_filter_include_all)
    # fine tune every part of training data so that make it meat std distrubtion
    allocator = AngleSegmentRecordAllocator(
        data_set,
        AngleSegment((-1.5, -0.5), 10),  # big sharp left
        AngleSegment((-0.5, -0.25), 14),  # sharp left
        AngleSegment((-0.25, -0.249),
                     3),  # sharp turn left (zero right camera)
        AngleSegment((-0.249, -0.1), 10),  # big turn left
        AngleSegment((-0.1, 0), 11),  # straight left
        AngleSegment((0, 0.001), 4),  # straight zero center camera
        AngleSegment((0.001, 0.1), 11),  # straight right
        AngleSegment((0.1, 0.25), 10),  # big turn right
        AngleSegment((0.25, 0.251), 3),  # sharp turn right (zero left camera)
        AngleSegment((0.251, 0.5), 14),  # sharp right
        AngleSegment((0.5, 1.5), 10)  # big sharp right
    )
    # a pipe line with shift -> flip -> brightness -> shadow augment processes
    augment = pipe_line_generators(
        shift_image_generator(angle_offset_pre_pixel=0.002), flip_generator,
        brightness_image_generator(0.35), shadow_generator)
    data_generator = DataGenerator(allocator.allocate, augment)
    model = nvidia_with_regularizer(input_shape=data_set.output_shape(),
                                    dropout=0.2)
    Trainer(model,
            learning_rate=0.0001,
            epoch=45,
            multi_process=use_multi_process,
            custom_name=inspect.stack()[0][3]).fit_generator(
                data_generator.generate(batch_size=256))
예제 #2
0
def segment_normal_distribution_flip_brightness_shadow_reg():
    data_set_train, data_set_val = create_real_dataset(
        filter_method=drive_record_filter_include_all)

    # fine tune every part of training data so that make it meat std distrubtion
    allocator_train = AngleSegmentRecordAllocator(
        data_set_train,
        AngleSegment((-1.5, -0.5), 10),  # big sharp left
        AngleSegment((-0.5, -0.25), 14),  # sharp left
        AngleSegment((-0.25, -0.249),
                     0.5),  # sharp turn left (zero right camera)
        AngleSegment((-0.249, -0.1), 12),  # big turn left
        AngleSegment((-0.1, 0), 13),  # straight left
        AngleSegment((0, 0.001), 1),  # straight zero center camera
        AngleSegment((0.001, 0.1), 13),  # straight right
        AngleSegment((0.1, 0.25), 12),  # big turn right
        AngleSegment((0.25, 0.251),
                     0.5),  # sharp turn right (zero left camera)
        AngleSegment((0.251, 0.5), 14),  # sharp right
        AngleSegment((0.5, 1.5), 10)  # big sharp right
    )
    allocator_val = AngleSegmentRecordAllocator(
        data_set_val,
        AngleSegment((-1.5, -0.5), 10),  # big sharp left
        AngleSegment((-0.5, -0.25), 14),  # sharp left
        AngleSegment((-0.25, -0.249),
                     0.5),  # sharp turn left (zero right camera)
        AngleSegment((-0.249, -0.1), 12),  # big turn left
        AngleSegment((-0.1, 0), 13),  # straight left
        AngleSegment((0, 0.001), 1),  # straight zero center camera
        AngleSegment((0.001, 0.1), 13),  # straight right
        AngleSegment((0.1, 0.25), 12),  # big turn right
        AngleSegment((0.25, 0.251),
                     0.5),  # sharp turn right (zero left camera)
        AngleSegment((0.251, 0.5), 14),  # sharp right
        AngleSegment((0.5, 1.5), 10)  # big sharp right
    )

    # a pipe line with shift -> flip -> brightness -> shadow augment processes
    data_generator_train = DataGenerator(
        allocator_train.allocate,
        pipe_line_generators(flip_random_generator,
                             brightness_image_generator(0.35),
                             shadow_generator))
    data_generator_val = DataGenerator(
        allocator_val.allocate,
        pipe_line_generators(flip_random_generator,
                             brightness_image_generator(0.35),
                             shadow_generator))
    model = nvidia_with_regularizer(input_shape=data_set_train.output_shape(),
                                    dropout=0.2)
    Trainer(model,
            learning_rate=0.0001,
            epoch=450,
            multi_process=use_multi_process,
            custom_name="noshift").fit_generator(
                data_generator_train.generate(batch_size=256),
                data_generator_val.generate(batch_size=256))