def resume_post(pars): print pars pars = dict(pars) id = pars.pop('id') if id == '0': return model.resume().insert(pars) else: return model.resume().update(pars, {'id': id})
def resume_post(pars): print pars pars = dict(pars) id = pars.pop('id') if id=='0': return model.resume().insert(pars) else: return model.resume().update(pars, {'id':id})
def index(self): users = model.user().getList('*') ##进行表查询 self.assign('users', users) ##设置为模板变量 jobs = model.job().getList('*') self.assign('jobs', jobs) resumes = model.resume().getList('*') self.assign('resumes', resumes) return self.display('index') ##显示指定模板
def default(self): if not self.isLogin(): self.assign('msg', '你当前还没有登录,请先登录!') return self.display('msg') uid = self.getUid() resume_info = model.resume().getOne('*', {'uid':uid}) if resume_info: self.assign('resume_info',resume_info) resume_id = resume_info['id'] work_experience = model.work_experience().getList('*', {'resume_id' : resume_id}) self.assign('work_experience',work_experience) study_experience = model.study_experience().getList('*', {'resume_id' : resume_id}) self.assign('study_experience',study_experience) else: self.assign('resume_info',{}) return self.display('resume')
def resume_search(pars): sql = u'select * from resume where hope_work like "%%%s%%"' % pars return model.resume().fetchAll(sql)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #parameters input_dim = 22 * 4 output_dim = 12 n_run = 25 model_name = 'wc_predicter.pt' train_path = 'data/Train_data/' train_frame = 200 test_path = 'data/Test_data/' predict_path = 'data/Test_ML_MD/' predict_frame = 20 test_frame = 50 atype_dict = {'O': 0, 'H1': 1, 'H2': 2, 'WC0': 3, 'WC1': 4, 'WC2': 5, 'WC3': 6} atype_inv = {0: 'O', 1: 'H1', 2: 'H2'} #create model model = mlp(input_dim=122 * 4, output_dim=12).to(device) if run_type == 'train': train(model, atype_dict, n_run, model_name, train_path, train_frame, test_path, test_frame) else: resume(model_name, model) model.eval() make_prediction(model, predict_path, predict_frame, atype_dict, savedir='predicted_temp')