def main(args): # load textfile train_dataset, dev_dataset, test_dataset, vocab, vocab_inv = read_data( args.text_filename, train_split_ratio=args.train_split, dev_split_ratio=args.dev_split, seed=args.seed) save_vocab(args.model_dir, vocab, vocab_inv) vocab_size = len(vocab) print_bold("data # hash") print("train {} {}".format(len(train_dataset), hash(str(train_dataset)))) print("dev {} {}".format(len(dev_dataset), hash(str(dev_dataset)))) print("test {} {}".format(len(test_dataset), hash(str(test_dataset)))) print("vocab {}".format(vocab_size)) # split into buckets train_buckets = make_buckets(train_dataset) print_bold("buckets #data (train)") if args.buckets_limit is not None: train_buckets = train_buckets[:args.buckets_limit + 1] for size, data in zip(bucket_sizes, train_buckets): print("{} {}".format(size, len(data))) print_bold("buckets #data (dev)") dev_buckets = make_buckets(dev_dataset) if args.buckets_limit is not None: dev_buckets = dev_buckets[:args.buckets_limit + 1] for size, data in zip(bucket_sizes, dev_buckets): print("{} {}".format(size, len(data))) print_bold("buckets #data (test)") test_buckets = make_buckets(test_dataset) for size, data in zip(bucket_sizes, test_buckets): print("{} {}".format(size, len(data))) # to maintain equilibrium min_num_data = 0 for data in train_buckets: if min_num_data == 0 or len(data) < min_num_data: min_num_data = len(data) repeats = [] for data in train_buckets: repeat = len(data) // min_num_data repeat = repeat + 1 if repeat == 0 else repeat repeats.append(repeat) num_updates_per_iteration = 0 for repeat, data in zip(repeats, train_buckets): num_updates_per_iteration += repeat * args.batchsize num_iteration = len(train_dataset) // num_updates_per_iteration + 1 # init model = load_model(args.model_dir) if model is None: model = RNNModel(vocab_size, args.ndim_embedding, args.num_layers, ndim_h=args.ndim_h, kernel_size=args.kernel_size, pooling=args.pooling, zoneout=args.zoneout, dropout=args.dropout, wgain=args.wgain, densely_connected=args.densely_connected, ignore_label=ID_PAD) if args.gpu_device >= 0: chainer.cuda.get_device(args.gpu_device).use() model.to_gpu() # setup an optimizer if args.eve: optimizer = Eve(alpha=args.learning_rate, beta1=0.9) else: optimizer = optimizers.Adam(alpha=args.learning_rate, beta1=0.9) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.GradientClipping(args.grad_clip)) optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay)) min_learning_rate = 1e-7 prev_ppl = None total_time = 0 def mean(l): return sum(l) / len(l) # training for epoch in xrange(1, args.epoch + 1): print("Epoch", epoch) start_time = time.time() for itr in xrange(1, num_iteration + 1): sys.stdout.write("\r{} / {}".format(itr, num_iteration)) sys.stdout.flush() for repeat, dataset in zip(repeats, train_buckets): for r in xrange(repeat): batch = sample_batch_from_bucket(dataset, args.batchsize) source, target = make_source_target_pair(batch) if model.xp is cuda.cupy: source = cuda.to_gpu(source) target = cuda.to_gpu(target) model.reset_state() Y = model(source) loss = softmax_cross_entropy(Y, target, ignore_label=ID_PAD) optimizer.update(lossfun=lambda: loss) if itr % args.interval == 0 or itr == num_iteration: save_model(args.model_dir, model) # show log sys.stdout.write("\r" + stdout.CLEAR) sys.stdout.flush() print_bold(" accuracy (sampled train)") acc_train = compute_random_accuracy(model, train_buckets, args.batchsize) print(" ", mean(acc_train), acc_train) print_bold(" accuracy (dev)") acc_dev = compute_accuracy(model, dev_buckets, args.batchsize) print(" ", mean(acc_dev), acc_dev) print_bold(" ppl (sampled train)") ppl_train = compute_random_perplexity(model, train_buckets, args.batchsize) print(" ", mean(ppl_train), ppl_train) print_bold(" ppl (dev)") ppl_dev = compute_perplexity(model, dev_buckets, args.batchsize) ppl_dev_mean = mean(ppl_dev) print(" ", ppl_dev_mean, ppl_dev) elapsed_time = (time.time() - start_time) / 60. total_time += elapsed_time print(" done in {} min, lr = {}, total {} min".format( int(elapsed_time), optimizer.alpha, int(total_time))) # decay learning rate if prev_ppl is not None and ppl_dev_mean >= prev_ppl and optimizer.alpha > min_learning_rate: optimizer.alpha *= 0.5 prev_ppl = ppl_dev_mean
def create_vocabs(ents, rel_vocab): ent_vocab = Vocab(Counter(ents)) vectors = get_pbg(ents, '../../embeddings', 'unified_embs.txt') ent_vocab.set_vectors(vectors.stoi, vectors.vectors, vectors.dim) save_vocab(os.path.join(BASE_PATH, 'vocab.pkl'), ent_vocab, rel_vocab)
def main(args): source_dataset, target_dataset, vocab, vocab_inv = read_data_and_vocab( args.source_train, args.target_train, args.source_dev, args.target_dev, args.source_test, args.target_test, reverse_source=True) save_vocab(args.model_dir, vocab, vocab_inv) source_dataset_train, source_dataset_dev, source_dataset_test = source_dataset target_dataset_train, target_dataset_dev, target_dataset_test = target_dataset vocab_source, vocab_target = vocab vocab_inv_source, vocab_inv_target = vocab_inv # split into buckets source_buckets_train, target_buckets_train = make_buckets( source_dataset_train, target_dataset_train) if args.buckets_slice is not None: source_buckets_train = source_buckets_train[:args.buckets_slice + 1] target_buckets_train = target_buckets_train[:args.buckets_slice + 1] # development dataset source_buckets_dev = None if len(source_dataset_dev) > 0: source_buckets_dev, target_buckets_dev = make_buckets( source_dataset_dev, target_dataset_dev) if args.buckets_slice is not None: source_buckets_dev = source_buckets_dev[:args.buckets_slice + 1] target_buckets_dev = target_buckets_dev[:args.buckets_slice + 1] # test dataset source_buckets_test = None if len(source_dataset_test) > 0: source_buckets_test, target_buckets_test = make_buckets( source_dataset_test, target_dataset_test) if args.buckets_slice is not None: source_buckets_test = source_buckets_test[:args.buckets_slice + 1] target_buckets_test = target_buckets_test[:args.buckets_slice + 1] # show log dump_dataset( source_dataset, vocab, (source_buckets_train, source_buckets_dev, source_buckets_test)) # to maintain equilibrium required_interations = [] for data in source_buckets_train: itr = len(data) // args.batchsize + 1 required_interations.append(itr) total_iterations = sum(required_interations) buckets_distribution = np.asarray(required_interations, dtype=float) / total_iterations # init model = load_model(args.model_dir) if model is None: model = seq2seq(len(vocab_source), len(vocab_target), args.ndim_embedding, args.ndim_h, args.num_layers, pooling=args.pooling, dropout=args.dropout, zoneout=args.zoneout, weightnorm=args.weightnorm, wgain=args.wgain, densely_connected=args.densely_connected, attention=args.attention) if args.gpu_device >= 0: cuda.get_device(args.gpu_device).use() model.to_gpu() # setup an optimizer optimizer = get_optimizer(args.optimizer, args.learning_rate, args.momentum) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.GradientClipping(args.grad_clip)) optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay)) final_learning_rate = 1e-5 total_time = 0 indices_train = [] for bucket_idx, bucket in enumerate(source_buckets_train): indices = np.arange(len(bucket)) np.random.shuffle(indices) indices_train.append(indices) def mean(l): return sum(l) / len(l) # training for epoch in range(1, args.epoch + 1): print("Epoch", epoch) start_time = time.time() with chainer.using_config("train", True): for itr in range(total_iterations): bucket_idx = int( np.random.choice(np.arange(len(source_buckets_train)), size=1, p=buckets_distribution)) source_bucket = source_buckets_train[bucket_idx] target_bucket = target_buckets_train[bucket_idx] # sample minibatch source_batch = source_bucket[:args.batchsize] target_batch = target_bucket[:args.batchsize] skip_mask = source_batch != ID_PAD target_batch_input, target_batch_output = make_source_target_pair( target_batch) # to gpu if args.gpu_device >= 0: skip_mask = cuda.to_gpu(skip_mask) source_batch = cuda.to_gpu(source_batch) target_batch_input = cuda.to_gpu(target_batch_input) target_batch_output = cuda.to_gpu(target_batch_output) # compute loss model.reset_state() if args.attention: last_hidden_states, last_layer_outputs = model.encode( source_batch, skip_mask) y_batch = model.decode(target_batch_input, last_hidden_states, last_layer_outputs, skip_mask) else: last_hidden_states = model.encode(source_batch, skip_mask) y_batch = model.decode(target_batch_input, last_hidden_states) loss = softmax_cross_entropy(y_batch, target_batch_output, ignore_label=ID_PAD) # update parameters optimizer.update(lossfun=lambda: loss) # show log printr("iteration {}/{}".format(itr + 1, total_iterations)) source_buckets_train[bucket_idx] = np.roll(source_bucket, -args.batchsize, axis=0) # shift target_buckets_train[bucket_idx] = np.roll(target_bucket, -args.batchsize, axis=0) # shift # shuffle for bucket_idx in range(len(source_buckets_train)): indices = indices_train[bucket_idx] np.random.shuffle(indices) source_buckets_train[bucket_idx] = source_buckets_train[ bucket_idx][indices] target_buckets_train[bucket_idx] = target_buckets_train[ bucket_idx][indices] # serialize save_model(args.model_dir, model) # clear console printr("") # show log with chainer.using_config("train", False): if epoch % args.interval == 0: printb("translate (train)") dump_random_source_target_translation(model, source_buckets_train, target_buckets_train, vocab_inv_source, vocab_inv_target, num_translate=5, beam_width=1) if source_buckets_dev is not None: printb("translate (dev)") dump_random_source_target_translation(model, source_buckets_dev, target_buckets_dev, vocab_inv_source, vocab_inv_target, num_translate=5, beam_width=1) if source_buckets_dev is not None: printb("WER (dev)") wer_dev = compute_error_rate_buckets(model, source_buckets_dev, target_buckets_dev, len(vocab_inv_target), beam_width=1) print(mean(wer_dev), wer_dev) elapsed_time = (time.time() - start_time) / 60. total_time += elapsed_time print("done in {} min, lr = {:.4f}, total {} min".format( int(elapsed_time), get_current_learning_rate(optimizer), int(total_time))) # decay learning rate decay_learning_rate(optimizer, args.lr_decay_factor, final_learning_rate)
def main(): # load textfile dataset_train, dataset_dev, _, vocab, vocab_inv = read_data(args.train_filename, args.dev_filename) vocab_size = len(vocab) save_vocab(args.model_dir, vocab, vocab_inv) # split into buckets train_buckets = make_buckets(dataset_train) if args.buckets_slice is not None: train_buckets = train_buckets[:args.buckets_slice + 1] dev_buckets = None if len(dataset_dev) > 0: dev_buckets = make_buckets(dataset_dev) if args.buckets_slice is not None: dev_buckets = dev_buckets[:args.buckets_slice + 1] # print dump_dataset(dataset_train, dataset_dev, train_buckets, dev_buckets, vocab_size) # to maintain equilibrium required_interations = [] for data in train_buckets: itr = math.ceil(len(data) / args.batchsize) required_interations.append(itr) total_iterations = sum(required_interations) buckets_distribution = np.asarray(required_interations, dtype=float) / total_iterations # init model = load_model(args.model_dir) if model is None: model = RNNModel(vocab_size, args.ndim_embedding, args.num_layers, ndim_h=args.ndim_h, kernel_size=args.kernel_size, pooling=args.pooling, zoneout=args.zoneout, dropout=args.dropout, weightnorm=args.weightnorm, wgain=args.wgain, densely_connected=args.densely_connected, ignore_label=ID_PAD) if args.gpu_device >= 0: chainer.cuda.get_device(args.gpu_device).use() model.to_gpu() # setup an optimizer optimizer = get_optimizer(args.optimizer, args.learning_rate, args.momentum) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.GradientClipping(args.grad_clip)) optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay)) final_learning_rate = 1e-4 total_time = 0 def mean(l): return sum(l) / len(l) # training for epoch in range(1, args.epoch + 1): print("Epoch", epoch) start_time = time.time() with chainer.using_config("train", True): for itr in range(total_iterations): bucket_idx = int(np.random.choice(np.arange(len(train_buckets)), size=1, p=buckets_distribution)) dataset = train_buckets[bucket_idx] np.random.shuffle(dataset) data_batch = dataset[:args.batchsize] source_batch, target_batch = make_source_target_pair(data_batch) if args.gpu_device >= 0: source_batch = cuda.to_gpu(source_batch) target_batch = cuda.to_gpu(target_batch) # update params model.reset_state() y_batch = model(source_batch) loss = F.softmax_cross_entropy(y_batch, target_batch, ignore_label=ID_PAD) optimizer.update(lossfun=lambda: loss) # show log printr("iteration {}/{}".format(itr + 1, total_iterations)) save_model(args.model_dir, model) # clear console printr("") # compute perplexity with chainer.using_config("train", False): if dev_buckets is not None: printb(" ppl (dev)") ppl_dev = compute_perplexity(model, dev_buckets, args.batchsize) print(" ", mean(ppl_dev), ppl_dev) # show log elapsed_time = (time.time() - start_time) / 60. total_time += elapsed_time print(" done in {} min, lr = {}, total {} min".format(int(elapsed_time), get_current_learning_rate(optimizer), int(total_time))) # decay learning rate decay_learning_rate(optimizer, args.lr_decay_factor, final_learning_rate)
def main(args): # load textfile source_dataset, target_dataset, vocab, vocab_inv = read_data(args.source_filename, args.target_filename, train_split_ratio=args.train_split, dev_split_ratio=args.dev_split, seed=args.seed) save_vocab(args.model_dir, vocab, vocab_inv) source_dataset_train, source_dataset_dev, source_dataset_test = source_dataset target_dataset_train, target_dataset_dev, target_dataset_test = target_dataset print_bold("data #") print("train {}".format(len(source_dataset_train))) print("dev {}".format(len(source_dataset_dev))) print("test {}".format(len(source_dataset_test))) vocab_source, vocab_target = vocab vocab_inv_source, vocab_inv_target = vocab_inv print("vocab {} (source)".format(len(vocab_source))) print("vocab {} (target)".format(len(vocab_target))) # split into buckets source_buckets_train, target_buckets_train = make_buckets(source_dataset_train, target_dataset_train) if args.buckets_limit is not None: source_buckets_train = source_buckets_train[:args.buckets_limit+1] target_buckets_train = target_buckets_train[:args.buckets_limit+1] print_bold("buckets #data (train)") for size, data in zip(bucket_sizes, source_buckets_train): print("{} {}".format(size, len(data))) print_bold("buckets #data (dev)") source_buckets_dev, target_buckets_dev = make_buckets(source_dataset_dev, target_dataset_dev) if args.buckets_limit is not None: source_buckets_dev = source_buckets_dev[:args.buckets_limit+1] target_buckets_dev = target_buckets_dev[:args.buckets_limit+1] for size, data in zip(bucket_sizes, source_buckets_dev): print("{} {}".format(size, len(data))) print_bold("buckets #data (test)") source_buckets_test, target_buckets_test = make_buckets(source_dataset_test, target_dataset_test) if args.buckets_limit is not None: source_buckets_test = source_buckets_test[:args.buckets_limit+1] target_buckets_test = target_buckets_test[:args.buckets_limit+1] for size, data in zip(bucket_sizes, source_buckets_test): print("{} {}".format(size, len(data))) # to maintain equilibrium min_num_data = 0 for data in source_buckets_train: if min_num_data == 0 or len(data) < min_num_data: min_num_data = len(data) repeats = [] for data in source_buckets_train: repeats.append(len(data) // min_num_data + 1) num_updates_per_iteration = 0 for repeat, data in zip(repeats, source_buckets_train): num_updates_per_iteration += repeat * args.batchsize num_iteration = len(source_dataset_train) // num_updates_per_iteration + 1 # init model = load_model(args.model_dir) if model is None: model = seq2seq(len(vocab_source), len(vocab_target), args.ndim_embedding, args.num_layers, ndim_h=args.ndim_h, pooling=args.pooling, dropout=args.dropout, zoneout=args.zoneout, wgain=args.wgain, densely_connected=args.densely_connected, attention=args.attention) if args.gpu_device >= 0: cuda.get_device(args.gpu_device).use() model.to_gpu() # setup an optimizer if args.eve: optimizer = Eve(alpha=args.learning_rate, beta1=0.9) else: optimizer = optimizers.Adam(alpha=args.learning_rate, beta1=0.9) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.GradientClipping(args.grad_clip)) optimizer.add_hook(chainer.optimizer.WeightDecay(args.weight_decay)) min_learning_rate = 1e-7 prev_wer = None total_time = 0 def mean(l): return sum(l) / len(l) # training for epoch in xrange(1, args.epoch + 1): print("Epoch", epoch) start_time = time.time() for itr in xrange(1, num_iteration + 1): for repeat, source_bucket, target_bucket in zip(repeats, source_buckets_train, target_buckets_train): for r in xrange(repeat): # sample minibatch source_batch, target_batch = sample_batch_from_bucket(source_bucket, target_bucket, args.batchsize) skip_mask = source_batch != ID_PAD target_batch_input, target_batch_output = make_source_target_pair(target_batch) # to gpu if model.xp is cuda.cupy: skip_mask = cuda.to_gpu(skip_mask) source_batch = cuda.to_gpu(source_batch) target_batch_input = cuda.to_gpu(target_batch_input) target_batch_output = cuda.to_gpu(target_batch_output) # compute loss model.reset_state() if args.attention: last_hidden_states, last_layer_outputs = model.encode(source_batch, skip_mask) Y = model.decode(target_batch_input, last_hidden_states, last_layer_outputs, skip_mask) else: last_hidden_states = model.encode(source_batch, skip_mask) Y = model.decode(target_batch_input, last_hidden_states) loss = softmax_cross_entropy(Y, target_batch_output, ignore_label=ID_PAD) optimizer.update(lossfun=lambda: loss) sys.stdout.write("\r{} / {}".format(itr, num_iteration)) sys.stdout.flush() if itr % args.interval == 0 or itr == num_iteration: save_model(args.model_dir, model) # show log sys.stdout.write("\r" + stdout.CLEAR) sys.stdout.flush() print_bold("translate (train)") show_random_source_target_translation(model, source_buckets_train, target_buckets_train, vocab_inv_source, vocab_inv_target, num_translate=5, argmax=True) print_bold("translate (dev)") show_random_source_target_translation(model, source_buckets_dev, target_buckets_dev, vocab_inv_source, vocab_inv_target, num_translate=5, argmax=True) print_bold("WER (sampled train)") wer_train = compute_random_mean_wer(model, source_buckets_train, target_buckets_train, len(vocab_inv_target), sample_size=args.batchsize, argmax=True) print(mean(wer_train), wer_train) print_bold("WER (dev)") wer_dev = compute_mean_wer(model, source_buckets_dev, target_buckets_dev, len(vocab_inv_target), batchsize=args.batchsize, argmax=True) mean_wer_dev = mean(wer_dev) print(mean_wer_dev, wer_dev) elapsed_time = (time.time() - start_time) / 60. total_time += elapsed_time print("done in {} min, lr = {}, total {} min".format(int(elapsed_time), optimizer.alpha, int(total_time))) # decay learning rate if prev_wer is not None and mean_wer_dev >= prev_wer and optimizer.alpha > min_learning_rate: optimizer.alpha *= 0.5 prev_wer = mean_wer_dev